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A note on submanifolds of generalized Kähler manifolds
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Abstract: In this note, we consider submanifolds of a generalized Kähler
manifold that are CR-submanifolds for the two associated Hermitian
structures. Then, we establish the conditions for the induced, general-
ized F structure to be a CRFK structure. The results extend similar
conditions which we obtained for hypersurfaces in an earlier paper.
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1 Introduction

This note is a complement to our previous paper [8]. All manifolds and mappings
are of class C∞ and the terminology and notation are classical [3]. An exception is
the use of Cartan’s conventions for exterior products and differentials, e.g.,

α ∧ β(X,Y ) = α(X)β(Y )− α(Y )β(X),

dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]).

Furthermore, we shall assume that the reader is familiar with the basic notions and
facts of generalized geometry in the sense of Hitchin as they already appeared in
many papers. In particular, we shall refer to [2, 4, 5, 6].

In this note we consider a class of submanifolds of a generalized Kähler manifold,
which bear a naturally induced generalized metric F structure and we study the
conditions for the induced structure to be a CRFK structure1 in the sense of [5]. In
[8] we studied this problem in the case of hypersurfaces.

1CR stands for Cauchy-Riemann, F stands for Yano’s F structure and K comes from Kähler.
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First, we shall deduce a result in the classical framework. Namely, we consider
a CR-submanifold of a Hermitian manifold and its induced F structure [1] and we
establish the conditions for the latter to be classical CRF in the sense of [5]. As a
corollary, it follows that these conditions hold for totally geodesic and totally umbil-
ical CR-submanifolds. Then, we shall consider bi-CR-submanifolds of a generalized
Kähler manifold, i.e. submanifolds that have the CR property for the two associated
Hermitian structures. Bi-CR-submanifolds have an induced, generalized metric F
structure and we establish the conditions for the induced structure to be CRFK. As
a corollary, it follows that, if the bi-CR-submanifold is totally geodesic, the induced
structure is a generalized CRFK structure.

2 Bi-CR-submanifolds

Let M2n be a generalized almost Hermitian manifold, with the generalized Rieman-
nian metric G and the compatible generalized almost complex structure J . Then,
the following results hold [2].

G is equivalent to G ∈ End(TM) (TM = TM ⊕ T ∗M) defined by

G(GX ,Y) = g(X ,Y) =
1

2
(α(Y ) + β(X)),

where X = (X,α),Y = (Y, β) ∈ TM and

G2 = Id, g(GX ,GY) = g(X ,Y).

G is also equivalent to a pair (γ, ψ) where γ is a Riemannian metric and ψ is a
2-form on M . The equivalence is via the ±1-eigenbundles of G

V± = {(X, [ψ±γX), X ∈ TM} ([ψ±γX = i(X)(ψ ± γ))

and the projections τ± = prTM : V± → TM are transfer isomorphisms.

For the structure J one has

J 2 = −Id, g(JX ,Y) + g(X ,JY) = 0, G(JX ,JY) = G(X ,Y).

The bundles V± are J -invariant and the transfer by τ± produces two γ-compatible
almost complex structures J± of M such that

J (X, [ψ±γX) = (J±X, [ψ±γ(J±X)).

Thus, (G,J ) is equivalent to the quadruple (γ, ψ, J±).
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Furthermore, a complementary, G-compatible, generalized almost complex struc-
ture is defined by J ′ = G ◦ J = J ◦ G and J ◦ J ′ = J ′ ◦ J , G = −J ◦ J ′. The
complementary structure corresponds to (γ, ψ, J+,−J−).

On an arbitrary manifold M , a generalized F structure F ∈ EndTM [5] is
defined by the conditions

F3 + F = 0, g(FX ,Y) + g(X ,FY) = 0

and the structure is metric with respect to a generalized Riemannian metric G if

G(FX ,Y) +G(X ,FY) = 0.

Then, like in the almost Hermitian case, there exists a complementary generalized
metric F structure F ′ = G ◦ F .

By Proposition 4.2 of [5], (F , G) is a generalized metric F structure iff there
exists two classical metric F structures (F±, γ) on M , i.e.,

F 3
± + F± = 0, γ(F±X,Y ) + γ(X,F±Y ) = 0 (X,Y ∈ TM) (2.1)

and the generalized F structure is given by

F(X, [ψ±γX) = (F±X, [ψ±γ(F±X)), ∀X ∈ TM.

Now, let ι : Nk ↪→M be a submanifold of M and let νN = T⊥γN be the normal
bundle of N . Then, TNM = TN ⊕νN and we shall identify T ∗N = ann νN, ν∗N =
annTN,TN = TN ⊕ ann νN . It follows easily that

T⊥gN = νN ⊕ annTN,

hence, the restriction g|TN coincides with the pairing metric on the manifold N ,
thus, it is non degenerate, and

TNM = TN ⊕T⊥gN. (2.2)

The metric G induces a generalized Riemannian metric G′ on N that corresponds
to the induced pair (γ′ = ι∗γ, ψ′ = ι∗ψ) and has the ±1-eigenbundles

V ′± = {(X, prann νN ([ψ±γX)) /X ∈ TN} = prTNV±,

where the projection is defined by (2.2) (e.g., [7]). In the particular case ψ = 0, we
get V ′± = V± ∩TN , we have

TN = (V+ ∩TN)⊕ (V− ∩TN) ⊆ TM (2.3)

and G′ is induced by G via the inclusion (2.3).
Now, we define the class of submanifolds that we want to study.
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Definition 2.1. 1. If (M,γ, J) is a classical almost Hermitian manifold, a subman-
ifold ι : N ↪→M is called a CR-submanifold if the equality

TN = (TN ∩ J(TN))⊕ (TN ∩ J(νN)) (2.4)

holds at every point of N and the rank of the terms is constant.

2. If (M,γ, ψ, J±) is a generalized almost Hermitian manifold, a submanifold
ι : N ↪→ M is called a bi-CR-submanifold if it is a CR-submanifold with respect to
the two almost Hermitian structures (γ, J±).

Part 1 of Definition 2.1 is equivalent to Bejancu’s original definition [1], the
distributions D,D⊥ of [1] being the terms of the direct sum (2.4). Among the
examples of CR-submanifolds we notice the hypersurfaces and the Ω-coisotropic
submanifolds (Ω(X,Y ) = γ(JX, Y ) is the Kähler form). The CR terminology is
justified by the fact that, if J is integrable with i-eigenbundle L ⊆ T cM , then,
L∩ T cN is a CR structure (the index c denotes complexification). In the particular
case ψ = 0, if we apply the transfer τ−1± to the equalities (2.4) for J± and use (2.3),
we can see that the bi-CR-submanifolds are characterized by

TN = (TN ∩ J (TN))⊕ (TN ∩ J (νN ⊕ ν∗N)),

hence, if ψ = 0, a bi-CR-submanifold is an F submanifold in the sense of [5].

If (2.4) holds, N has the induced metric F structure

F |TN∩J±(TN) = J |TN∩J±(TN), F |TN∩J(νN) = 0. (2.5)

Notice that F of (2.5) coincides with the tensor φ of [1].

In the generalized case, the use of J± in (2.5) yields two structures F± and we
get an induced generalized metric F structure F defined by the quadruple (γ, ψ, F±).

3 Submanifolds of generalized Kähler manifolds

The generalized almost complex structure J may be identified with its±i-eigenbundles
L, L̄ (the bar denotes complex conjugation) and in the generalized almost Hermitian
case of (G,J ,J ′) one has [2]

L = (L ∩ V+)⊕ (L ∩ V−), L′ = (L ∩ V+)⊕ (L̄ ∩ V+).

The structure J is integrable (generalized complex), respectively (G,J ,J ′) is
generalized Hermitian, if L is closed under Courant brackets. Furthermore, (G,J ,J ′)
is generalized Kähler if J ,J ′ are integrable, which turns out to be equivalent to the
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following pair of properties: (i) the pairs (γ, J±) are Hermitian structures, (ii) for
the Hermitian structures (γ, J±) one has

γ(∇γXJ±(Y ), Z) = ∓1

2
[dψ(X, J±Y,Z) + dψ(X,Y, J±Z)], (3.1)

where ∇γ is the Levi-Civita connection of γ [2, 6]. If the 2-form ψ is closed, M is
a bi-Kählerian manifold, i.e., a manifold with two Kähler structures with the same
Riemannian metric γ.

The generalized F structure F may be identified with its (±i, 0)-eigenbundles
E , Ē ,S and F is integrable or CRF if E is closed under Courant brackets [5]. Fur-
thermore [5], the generalized metric F structure (G,F ,F ′) is a generalized CRFK
structure if F ,F ′ are integrable and the eigenbundles of G,F satisfy the Courant
bracket condition

[V+ ∩ S, V− ∩ S] ⊆ S.

These properties are equivalent to the pair of properties [5] (a) the corresponding
structures F± are classical CRF structures, i.e., F±(X,α) = (F±X,−α ◦ F±) are
generalized CRF structures, (b) one has the equalities

γ(F±(∇γXF±)Y,Z) = ±1

2
[dψ(X,Y, F 2

±Z) + dψ(X,F±Y, F±Z)]. (3.2)

If the form ψ is closed, M is a partially bi-Kählerian submanifold, i.e., a Riemannian
manifold such that its metric γ has two de Rham decompositions that have one
Kählerian term [5].

Hereafter, we shall assume that (M,G,J ,J ′) is a generalized Káhler manifold,
N is a bi-CR-submanifold and (G′,F) is the induced structure. Then, we will look
for the conditions that characterize the case where the induced structure is a CRFK
structure and we begin by the following preparations.

Riemannian geometry gives us the Gauss-Weingarten equations along the sub-
manifold N of the Riemannian manifold (M,γ),

∇γXY = ∇γ
′

XY + b(X,Y ), ∇γXU = −WUX +∇νXU, (3.3)

where X,Y ∈ TN,U ∈ νN , ∇γ ,∇γ′ are the Levi-Civita connections of the met-
rics γ, γ′ = ι∗γ, ∇ν is the induced connection of the normal bundle of N and
b(X,Y ) = b(Y,X) ∈ νN,WνX ∈ TN are the νN -valued second fundamental form
and the Weingarten operator, respectively. The latter are related by the formula
γ(WUX,Y ) = γ(b(X,Y ), U).

Using these equations, we can extend the proof of Proposition 3.2 of [8] and get
the following result.
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Theorem 3.1. Let ι : N ↪→ M be a CR-submanifold of the Hermitian manifold
(M,γ, J). Then, the induced structure F of N is a classical CRF structure iff

dΩ(X,Y, Z) = dΩ(JX, JY, Z), γ(b(FX,FY )− b(X,Y ), JZ) = 0, (3.4)

for all X,Y ∈ TN ∩ (JTN) and Z ∈ TN ∩ (JνN).

Proof. As earlier, Ω(X,Y ) = γ(JX, Y ) is the Kähler form. Following [5], the struc-
ture F is classical CRF iff

[H,H] ⊆ H, [H,Qc] ⊆ H ⊕Qc, (3.5)

where H, H̄,Q are the ±i, 0-eigenbundles of F and the brackets are Lie brackets.

The definition (2.5) of F shows that Q = TN ∩ (JνN), H ⊕ H̄ is the complexifi-
cation of P = imF = TN ∩ (JTN) and H = L∩T cN , where L is the i-eigenbundle
of J . In particular, the integrability of J (M is Hermitian) implies the first condition
(3.5) and we have to take care of the second condition only.

The second condition (3.5) is equivalent to [5]

F [FX,Z]− F 2[X,Z] = 0, ∀X ∈ P,Z ∈ Q. (3.6)

Because of the second condition (2.1) and since, F |P = JP , F
2|P = −Id, (3.6) is

equivalent to

γ([JX,Z], JY ) = γ([X,Z], Y ), ∀X,Y ∈ P,Z ∈ Q. (3.7)

Indeed, (3.7) means that the left hand side of (3.6) is orthogonal to P and it is also
orthogonal to Q because F |Q = 0.

We shall express (3.7) using the equalities

[X,Z] = ∇γXZ −∇
γ
ZX, [JX,Z] = ∇γJXZ −∇

γ
Z(JX),

∇γZ(JY ) = (∇γZJ)Y + J∇γZY

and the γ-compatibility if J . The result is

γ((∇γZJ)X, JY )− γ(∇γJXZ, JY ) + γ(∇γXZ, Y ) = 0. (3.8)

On the other hand, we have

−γ(∇γJXZ, JY ) = γ(J∇γJXZ, Y ) = γ(∇γJX(JZ), Y )− γ((∇γJXJ)Z, Y ),

γ(∇γXZ, Y ) = −γ(∇γX(J2Z), Y ) = −γ((∇γXJ)(JZ), Y ) + γ(∇γX(JZ), JY ),
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and it follows that (3.8) is equivalent to

γ((∇γZJ)X,JY )− γ((∇γJXJ)Z, Y ) + γ(∇γJX(JZ), Y )

−γ((∇γXJ)(JZ), Y ) + γ(∇γX(JZ), JY ) = 0.

Then, since Z ∈ Q implies JZ ∈ νN , the third and fifth term of the previous
equality may be expressed using the Gauss-Weingarten equations and the relation
between the Weingarten operator and the second fundamental form. As a result, we
get the following equivalent form of the condition (3.6)

γ((∇γZJ)X, JY )− γ((∇γJXJ)Z, Y )− γ((∇γXJ)(JZ), Y )

= γ(b(JX, Y ) + b(X, JY ), JZ).
(3.9)

To continue, we recall that the integrability of J is equivalent to the following
equality

2γ(∇γXJ(Y ), Z) = dΩ(X,Y, Z)− dΩ(X, JY, JZ), ∀X,Y, Z ∈ TM (3.10)

(this result is given by Proposition IX.4.2 of [3] with our conventions for the sign of
Ω and the evaluation of the exterior differential). We also recall the equality

dΩ(JZ, JX, JY ) = dΩ(JZ,X, Y ) + dΩ(Z, JX, Y ) + dΩ(Z,X, JY ) (3.11)

(check for arguments of complex type (1, 0), (0, 1)).
Modulo (3.10) and (3.11) condition (3.9) becomes

dΩ(Z,X, JY ) + dΩ(Z, JX, Y ) = 2[γ(b(JX, Y ) + b(X,JY ), JZ)]. (3.12)

In (3.12) the left hand side is skew symmetric in X,Y and the right hand side
is symmetric. Therefore, the equality holds iff both of its sides vanish and the
replacement of Y by JY shows that the result is exactly (3.4).

Corollary 3.2. If N is a totally umbilical (in particular, totally geodesic) subman-
ifold of a Kähler manifold M , the induced F structure of N is a classical CRF
structure.

Proof. Under the hypotheses of the corollary, conditions (3.4) obviously hold.

Corollary 3.3. If N is an Ω-coisotropic submanifold of the Hermitian manifold
(M,γ, J) it is a CR-submanifold and the induced F structure is classical CRF iff the
first condition (3.4) holds and the second fundamental form satisfies the equality

b(FX,FY ) = b(X,Y ), ∀X,Y ∈ imF.
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Proof. It is well known that N is a CR-submanifold and, in this case, (2.4) takes
the form

TN = (TN ∩ J(TN))⊕ J(νN).

Indeed, we have J(νN) = T⊥ΩN ⊆ TN and the second term of the right hand side of
(2.4) is J(νN). On the other hand, it follows easily that (JνN)⊥γ′ = TN ∩ J(TN).
Then, the assertion of the corollary follows from the fact that, in the second condition
(3.4), JZ runs through the whole normal bundle νN .

With the preparations done, we now give the answer to the motivating question
of the note. It turns out to be a straightforward extension of Proposition 3.3 of [8].

Theorem 3.4. Let ι : N ↪→ M be a bi-CR-submanifold of the generalized Kähler
manifold (M,γ, ψ, J±). Then, the induced generalized metric F structure F of N is
a generalized CRFK structure iff, ∀Z ∈ Q± = ker F±, one has

dψ(X,Y, J±Z) = dψ(J±X, J±Y, J±Z), ∀X,Y ∈ P± = imF±,

dψ(X, J±Y, J±Z) = ∓2γ(b(X,F±Y ), J±Z), ∀X ∈ TN, Y ∈ P±.
(3.13)

Proof. Since M is generalized Kähler, (γ, J±) are Hermitian structures, hence, (3.10)
holds for these two structures, and it implies that condition (3.1) is equivalent to [2]

dψ(X,Y, Z) = ∓dΩ±(J±X, J±Y, J±Z), ∀X,Y, Z ∈ TM. (3.14)

For F to be CRFK, the first required condition, condition (a), is that (γ′, F±) are
classical metric CRF structures, i.e., that conditions (3.4) hold for both structures.
Modulo (3.14) the first condition (3.4) becomes the first condition (3.13) and the
second condition (3.4) is

γ(b(F±X,F±Y )− b(X,Y ), J±Z) = 0, ∀X,Y ∈ P±, Z ∈ Q±. (3.15)

The second required condition, condition (b), is (3.2) on (N, γ′), where we may
assume Z ∈ P± since the condition holds trivially if F±Z = 0. Then, F 2

±Z = −Z
and, using (2.1), (3.2) becomes

γ′((∇γ
′

XF±)Y, F±Z) = ∓1

2
[dψ(X,F±Y, F±Z)− dψ(X,Y, Z)], (3.16)

with X,Y ∈ TN,Z ∈ P±.
We consider the cases (i) Y ∈ P±, (ii) Y ∈ Q± separately. In case (i), since

F±|P± = J±|P± , the Gauss equation yields

γ′((∇γ
′

XF±)Y, F±Z) = γ((∇γXJ±)Y, J±Z),
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which makes (3.16) take the form (3.1) with Z replaced by J±Z. Therefore it holds
because M is generalized Kähler.

In case (ii), we have F±Y = 0 and we get

γ′(F±(∇γ
′

XF±)Y, Z) = −γ′(F 2
±∇

γ′

XY, Z) = −γ′(∇γ
′

XY, F
2
±Z) = γ′(∇γ

′

XY,Z),

which, together with the Gauss equation, changes (3.16) into

γ(∇γXY,Z) = ±1

2
dψ(X,Y, Z). (3.17)

Furthermore, we shall take into account that Y ∈ Q± implies J±Y ∈ νN and
use the Weingarten equation. We get

γ(∇γXY, Z) = γ(J±∇γXY, J±Z) = γ(∇γX(J±Y ), J±Z)− γ((∇γXJ±)Y, J±Z)

(3.3),(3.1)
= −γ(b(X, J±Z), J±Y )∓ 1

2 [dψ(X, J±Y, J±Z)− dψ(X,Y, Z)].

Accordingly, condition (3.17) becomes

γ(b(X, J±Z), J±Y ) = ±1

2
dψ(X, J±Y, J±Z),

which is the second condition (3.13) with the replacements Y 7→ Z,Z 7→ Y .
To end the proof we only have to remark that conditions (3.13) imply (3.15).

This follows by noticing that, if we replace X ∈ P± by F±X, X ∈ P±, the second
condition (3.13) becomes

γ(b(X,Y ), J±Z) = ∓1

2
dψ(X,Y, J±Z), , ∀X,Y ∈ P±, Z ∈ Q±

and by using the first condition (3.13).

Corollary 3.5. If M is a generalized Kähler manifold with a closed associated
form ψ, then, any totally geodesic, bi-CR-submanifold of M has an induced CRFK
structure.

Proof. The assertion is an obvious consequence of conditions (3.13).

Corollary 3.6. If M is a generalized Kähler manifold with a closed associated form
ψ and N is a bi-coisotropic submanifold, then, the induced generalized F structure
is CRFK iff b(X,Y ) = 0, ∀X ∈ TN, Y ∈ P±.

Proof. By bi-coisotropic we understand that N is coisotropic with respect to the
two Kähler forms Ω±. The assertion follows because J±Z of the right hand side of
(3.13) runs through the whole bundle νN (see the proof of Corollary 3.3).
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Because of the symmetry of the second fundamental form, the CRFK condition
of Corollary 3.6 may also be seen as b(X,Y ) = 0, ∀X ∈ P±, Y ∈ TN . Thus, it
follows that, if the induced structure F of the corollary is CRFK, and if b(Z,Z ′) = 0
for either Z,Z ′ ∈ Q+ or Z,Z ′ ∈ Q−, then, N is a totally geodesic submanifold of
M .

References

[1] A. Bejancu, Geometry of CR-Submanifolds, Reidel Publ. Comp., Dordrecht,
1986.

[2] M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Univ. Oxford, 2003;
arXiv:math.DG/0401221.

[3] S. Kobayashy and K. Nomizu, Foundations of Differential Geometry, I, II, In-
terscience Publ., New York, 1963, 1969.

[4] I. Vaisman, Reduction and submanifolds of generalized complex manifolds, Diff.
Geom. Appl., 25 (2007), 147-166.

[5] I. Vaisman, Generalized CRF structures, Geom. Dedicata, 133 (2008), 129-154.

[6] I. Vaisman, From generalized Kähler to generalized Sasakian structures, J. of
Geom. and Symmetry in Physics, 18 (2010), 63-86.

[7] I. Vaisman, A note on submanifolds and mappings in generalized complex ge-
ometry, Monatsh. Math., 180 (2016), 373-390.

[8] I. Vaisman, On hypersurfaces of generalized Kähler manifolds, Diff. Geom.
Appl., 56 (2018), 120-141.

Izu Vaisman
Department of Mathematics, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
E-mail: vaisman@math.haifa.ac.il


