Optimization problems in classes of rearrangements for (p,q)-Laplace equations

Feyissa Kebede

Abstract: This paper is concerned with maximization and minimization of a functional associated with solutions of (p,q)-Laplace equations depending on functions which belong to a class of rearrangements. We prove existence and uniqueness results, and present some features of optimal solutions.

Keywords: Rearrangements, (p,q)-Laplacian, Energy Integral, Optimization.

1 Introduction

Let Ω be a bounded smooth domain in \(\mathbb{R}^N \), and let \(1 < q < p \). We consider the boundary value problem

\[-\Delta_p u - \Delta_q u = f(x,u) \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega.\]

The non-homogeneous differential operator \(\Delta_p + \Delta_q \) is called (p,q)-Laplacian. As observed in [17], it stems from a wide range of important applications including biophysics [10], plasma physics [19], reaction-diffusion equations [7], as well as models of elementary particles [2]. In the last decades there has been a great interest in the investigation of these problems mainly concerning existence and multiplicity of solutions, eigenvalues, ground-state solutions [1, 6, 11].

In the present paper we consider the case \(f(x,u) = g(x)|u|^{\alpha-1} \), where \(1 \leq \alpha < q \) and \(g(x) \) is a measurable bounded non-negative function which is positive in a subset with a positive measure. For \(v \in H_0^{1,p}(\Omega) \) we define

\[I(v) = \int_{\Omega} \left(\frac{1}{p} |\nabla v|^p + \frac{1}{q} |\nabla v|^q - \frac{1}{\alpha} g|v|^\alpha \right) dx, \]
and consider the classical minimization problem

$$\inf_{v \in H^{1,p}_0(\Omega)} I(v). \quad (1.1)$$

The proof of the existence of a solution to this problem is standard. Let \(v_i \in H^{1,p}_0(\Omega) \) be a sequence such that

$$\tilde{I} := \lim_{i \to \infty} I(v_i),$$

where \(\tilde{I} \) is the value of the inferior of \(I(v) \). By using Poincaré and Hölder inequalities we find

$$\int_\Omega g|v_i|^\alpha dx \leq C \int_\Omega |\nabla v_i|^\alpha dx \leq C \left(\int_\Omega |\nabla v_i|^p dx \right)^{\frac{\alpha}{p}}.$$

Here and in what follows we denote by \(C \) constants (possibly different) independent of \(i \). It follows that

$$I(v_i) \geq \frac{1}{p} \int_\Omega |\nabla v_i|^p \, dx - C \left(\int_\Omega |\nabla v_i|^p \, dx \right)^{\frac{\alpha}{p}}.$$

By using the well known inequality

$$(\epsilon B)^{\frac{1}{\epsilon}} \leq \frac{\alpha}{p} (\epsilon B)^{\frac{\alpha}{p}} + \frac{p - \alpha}{p} \left(\frac{1}{\epsilon} \right)^{\frac{p}{p-\alpha}}$$

for \(B = C \left(\int_\Omega |\nabla v_i|^p dx \right)^{\frac{\alpha}{p}} \) and for a suitable value of \(\epsilon \) we find

$$C \left(\int_\Omega |\nabla v_i|^p dx \right)^{\frac{\alpha}{p}} \leq \frac{1}{2p} \int_\Omega |\nabla v_i|^p dx + C.$$

(Clearly, the two constants \(C \) in above are different.) Hence, we have

$$I(v_i) \geq \frac{1}{2p} \int_\Omega |\nabla v_i|^p \, dx - C.$$

It follows that the value of \(\tilde{I} \) is finite. We also find that

$$\int_\Omega |\nabla v_i|^p dx \leq C.$$

Hence, a subsequence of \(\{v_i\} \) (denoted again \(\{v_i\} \)) converges weakly in \(H^{1,p}(\Omega) \) and in \(H^{1,q}(\Omega) \) to some function \(u \in H^{1,p}_0(\Omega) \). By Rellich’s Theorem, \(\{v_i\} \) converges to
u strongly in $L^p(\Omega)$ as well as in $L^q(\Omega)$ and in $L^\alpha(\Omega)$. Therefore, we have

$$\tilde{I} \leq I(u) = \int_\Omega \left(\frac{1}{p} |\nabla u|^p + \frac{1}{q} |\nabla u|^q - \frac{1}{\alpha} g |u|^\alpha \right) dx$$

$$\leq \liminf_{i \to \infty} \int_\Omega \frac{1}{p} |\nabla v_i|^p dx + \liminf_{i \to \infty} \int_\Omega \frac{1}{q} |\nabla v_i|^q dx - \lim_{i \to \infty} \frac{1}{\alpha} g |v_i|^\alpha dx$$

$$\leq \lim_{i \to \infty} \int_\Omega \left(\frac{1}{p} |\nabla v_i|^p + \frac{1}{q} |\nabla v_i|^q - \frac{1}{\alpha} g |v_i|^\alpha \right) dx = \tilde{I}.$$

Hence, u is a minimizer in (1.1). Since $I(u) = I(|u|)$, we may assume that a non-negative minimizer exists.

We note that a minimizer u of the functional $I(v)$ is a maximizer of the functional

$$-I(v) = \int_\Omega \left(\frac{1}{\alpha} g |v|^\alpha - \frac{1}{p} |\nabla v|^p - \frac{1}{q} |\nabla v|^q \right) dx.$$

It is easy to show that a non-negative minimizer u of problem (1.1) is a solution to the following boundary value problem:

$$\int_\Omega (|\nabla u|^{p-2} + |\nabla u|^{q-2}) \nabla u \cdot \nabla \phi - g u^{\alpha-1} \phi) dx = 0 \quad \forall \phi \in H^{1,p}_0(\Omega). \quad (1.2)$$

Problem (1.2) has been discussed in [15, 16]. In particular, since g is non-negative and bounded, any solution u belongs to $C^{1,\sigma}(\Omega)$ for some $0 < \sigma < 1$. Another important fact is that either $u(x) \equiv 0$ or $u(x) > 0$ in Ω (see [18], Theorem 2.5.1 page 74 and Corollary 7.1.3 page 163).

Under our assumptions (in particular $\alpha < q < p$), a minimizer of (1.1) is non trivial. Indeed, if $v \in H^{1,p}(\Omega)$, $v > 0$, and $\epsilon > 0$ small enough we have

$$I(\epsilon v) = \epsilon^\alpha \int_\Omega \left(\frac{\epsilon^{p-\alpha}}{p} |\nabla v|^p + \frac{\epsilon^{q-\alpha}}{q} |\nabla v|^q - \frac{1}{\alpha} g(x)v^\alpha \right) dx < 0.$$

The following uniqueness result is crucial for our purposes.

Theorem 1.1. Let Ω be a bounded smooth domain in \mathbb{R}^N, let $g \in L^\infty(\Omega)$ and let $1 \leq \alpha < q < p$. If $u, v \in H^{1,p}_0(\Omega) \cap C^0(\overline{\Omega})$ are positive solutions to problem (1.2) then $u(x) = v(x)$ in Ω.

Proof. This proof is inspired by the proof of Theorem 3.2 in [9]. See also [13], page 160. Define $A = \{x \in \Omega : u(x) > v(x)\}$. If we prove that A is empty, the assertion of the theorem follows. We argue by contradiction, assuming A is not
empty. For $\epsilon > 0$, define $u_\epsilon = u + \epsilon$ and $v_\epsilon = v + \epsilon$. Note that in A we have $u_\epsilon(x) > v_\epsilon(x)$. Using

$$\phi_1(x) = \max\left[\frac{u_\epsilon^\alpha(x) - v_\epsilon^\alpha(x)}{u_\epsilon^{\alpha-1}(x)}, 0\right]$$

as test function in the equation for u we obtain

$$\int_A |\nabla u|^{p-2}\nabla u \cdot \nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{u_\epsilon^{\alpha-1}}\right) dx + \int_A |\nabla u|^{q-2}\nabla u \cdot \nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{u_\epsilon^{\alpha-1}}\right) dx = \int_A g(x)(u_\epsilon^\alpha - v_\epsilon^\alpha) \left(\frac{u}{u_\epsilon}\right)^{\alpha-1} dx.$$

Using

$$\phi_2(x) = \max\left[\frac{u_\epsilon^\alpha(x) - v_\epsilon^\alpha(x)}{v_\epsilon^{\alpha-1}(x)}, 0\right]$$

as test function in the equation for v we obtain

$$\int_A |\nabla v|^{p-2}\nabla v \cdot \nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{v_\epsilon^{\alpha-1}}\right) dx + \int_A |\nabla v|^{q-2}\nabla v \cdot \nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{v_\epsilon^{\alpha-1}}\right) dx = \int_A g(x)(v_\epsilon^\alpha - u_\epsilon^\alpha) \left(\frac{v}{v_\epsilon}\right)^{\alpha-1} dx.$$

Subtracting the latter equality from the first one we get

$$\int_A |\nabla u|^{p-2}\nabla u \cdot \nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{u_\epsilon^{\alpha-1}}\right) dx + \int_A |\nabla u|^{q-2}\nabla u \cdot \nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{u_\epsilon^{\alpha-1}}\right) dx + \int_A |\nabla v|^{p-2}\nabla v \cdot \nabla \left(\frac{v_\epsilon^\alpha - u_\epsilon^\alpha}{v_\epsilon^{\alpha-1}}\right) dx + \int_A |\nabla v|^{q-2}\nabla v \cdot \nabla \left(\frac{v_\epsilon^\alpha - u_\epsilon^\alpha}{v_\epsilon^{\alpha-1}}\right) dx = L_\epsilon,$$

where

$$L_\epsilon = \int_A g(x)(u_\epsilon^\alpha - v_\epsilon^\alpha) \left(\frac{u}{u_\epsilon}\right)^{\alpha-1} dx + \int_A g(x)(v_\epsilon^\alpha - u_\epsilon^\alpha) \left(\frac{v}{v_\epsilon}\right)^{\alpha-1} dx.$$

We claim that the sum of the second and the fourth integrals in the left hand side of (1.3) in non-negative. Indeed, since

$$\nabla \left(\frac{u_\epsilon^\alpha - v_\epsilon^\alpha}{u_\epsilon^{\alpha-1}}\right) = \nabla u + (\alpha - 1)\left(\frac{v_\epsilon}{u_\epsilon}\right)^\alpha \nabla u - \alpha \left(\frac{v_\epsilon}{u_\epsilon}\right)^{\alpha-1} \nabla v$$

and

$$\nabla \left(\frac{v_\epsilon^\alpha - u_\epsilon^\alpha}{v_\epsilon^{\alpha-1}}\right) = \nabla v + (\alpha - 1)\left(\frac{u_\epsilon}{v_\epsilon}\right)^\alpha \nabla v - \alpha \left(\frac{u_\epsilon}{v_\epsilon}\right)^{\alpha-1} \nabla u$$
we find
\[\int_A |\nabla u|^{q-2} \nabla u \cdot \nabla \left(\frac{v_\varepsilon^\alpha - v_\varepsilon^\alpha}{u_\varepsilon^{\alpha-1}} \right) \, dx + \int_A |\nabla v|^{q-2} \nabla v \cdot \nabla \left(\frac{v_\varepsilon^\alpha - u_\varepsilon^\alpha}{v_\varepsilon^{\alpha-1}} \right) \, dx \]
\[= \int_A \left\{ |\nabla u|^q \left(1 + (\alpha - 1) \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^\alpha \right) - \alpha |\nabla u|^{q-2} \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^{\alpha-1} \nabla u \cdot \nabla v \right\} \, dx \tag{1.5} \]
\[+ \int_A \left\{ |\nabla v|^q \left(1 + (\alpha - 1) \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^\alpha \right) - \alpha |\nabla v|^{q-2} \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^{\alpha-1} \nabla v \cdot \nabla u \right\} \, dx. \]
Now, for \(X, Y \in \mathbb{R}^N \), we recall the inequality
\[|X|^{q-2} X \cdot Y \leq \frac{1}{s} |X|^q + \frac{1}{q} |Y|^q \] with \(\frac{1}{s} + \frac{1}{q} = 1 \),
and replace the vector \(X \) by \(\lambda X \), where \(\lambda \) is a positive real number. We get
\[|X|^{q-2} \lambda^{q-1} X \cdot Y \leq \frac{1}{s} \lambda^q |X|^q + \frac{1}{q} |Y|^q. \]
With \(\lambda = \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^{\frac{\alpha-1}{q-1}} \), \(X = \nabla u \), \(Y = \nabla v \) we find
\[|\nabla u|^{q-2} \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^{\alpha-1} \nabla u \cdot \nabla v \leq \frac{1}{s} \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^{s(\alpha-1)} |\nabla u|^q + \frac{1}{q} |\nabla v|^q. \]
Similarly, with \(\lambda = \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^{\frac{\alpha-1}{q-1}} \), \(X = \nabla v \), \(Y = \nabla u \) we find
\[|\nabla v|^{q-2} \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^{\alpha-1} \nabla v \cdot \nabla u \leq \frac{1}{s} \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^{s(\alpha-1)} |\nabla v|^q + \frac{1}{q} |\nabla u|^q. \]
In view of these inequalities, by (1.5) we get
\[\int_A |\nabla u|^{q-2} \nabla u \cdot \nabla \left(\frac{u_\varepsilon^\alpha - v_\varepsilon^\alpha}{u_\varepsilon^{\alpha-1}} \right) \, dx + \int_A |\nabla v|^{q-2} \nabla v \cdot \nabla \left(\frac{v_\varepsilon^\alpha - u_\varepsilon^\alpha}{v_\varepsilon^{\alpha-1}} \right) \, dx \]
\[\geq \int_A \left\{ |\nabla u|^q \left[1 + (\alpha - 1) \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^\alpha - \frac{\alpha}{s} \left(\frac{v_\varepsilon}{u_\varepsilon} \right)^{s(\alpha-1)} \right] - \alpha \right\} \, dx \]
\[+ |\nabla v|^q \left[1 + (\alpha - 1) \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^\alpha - \frac{\alpha}{s} \left(\frac{u_\varepsilon}{v_\varepsilon} \right)^{s(\alpha-1)} \right] \, dx. \]
Since the function
\[\psi(t) = 1 + (\alpha - 1)t^\alpha - \frac{\alpha}{s} t^{s(\alpha-1)} - \frac{\alpha}{q} \]
is non-negative for \(t > 0 \) we find
\[\int_A |\nabla u|^{q-2} \nabla u \cdot \nabla \left(\frac{u_\varepsilon^\alpha - v_\varepsilon^\alpha}{u_\varepsilon^{\alpha-1}} \right) \, dx + \int_A |\nabla v|^{q-2} \nabla v \cdot \nabla \left(\frac{v_\varepsilon^\alpha - u_\varepsilon^\alpha}{v_\varepsilon^{\alpha-1}} \right) \, dx \geq 0 \]
as claimed. Therefore, from (1.3) we find
\[\int_A |\nabla u|^{p-2}\nabla u \cdot \nabla \left(\frac{u_{\epsilon}^{\alpha} - v_{\epsilon}^{\alpha}}{u_{\epsilon}^{\alpha-1}} \right) dx + \int_A |\nabla v|^{p-2}\nabla v \cdot \nabla \left(\frac{v_{\epsilon}^{\alpha} - u_{\epsilon}^{\alpha}}{v_{\epsilon}^{\alpha-1}} \right) dx \leq L_{\epsilon}, \quad (1.6) \]
where \(L_{\epsilon} \) is defined as in (1.4). The left hand side of (1.6) can be rewritten as in (1.5) with \(p \) in place of \(q \), that is
\[\int_A |\nabla u|^{p-2}\nabla u \cdot \nabla \left(\frac{u_{\epsilon}^{\alpha} - v_{\epsilon}^{\alpha}}{u_{\epsilon}^{\alpha-1}} \right) dx + \int_A |\nabla v|^{p-2}\nabla v \cdot \nabla \left(\frac{v_{\epsilon}^{\alpha} - u_{\epsilon}^{\alpha}}{v_{\epsilon}^{\alpha-1}} \right) dx = \int_A \left\{ \left| \nabla u \right|^{p} \left[1 + (\alpha - 1) \left(\frac{u_{\epsilon}}{u_{\epsilon}} \right)^{\alpha} \right] - \alpha \left| \nabla u \right|^{p-2} \left(\frac{v_{\epsilon}}{u_{\epsilon}} \right)^{\alpha-1} \nabla u \cdot \nabla v \right\} dx + \int_A \left\{ \left| \nabla v \right|^{p} \left[1 + (\alpha - 1) \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right)^{\alpha} \right] - \alpha \left| \nabla v \right|^{p-2} \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right)^{\alpha-1} \nabla v \cdot \nabla u \right\} dx. \quad (1.7) \]
Using the inequality
\[\left| X \right|^{p-2}X \cdot Y \leq \frac{\left| X \right|^{p}}{r} \frac{1}{p} \left| Y \right|^{p}, \quad \frac{1}{r} + \frac{1}{p} = 1 \]
we find
\[\left| \nabla u \right|^{p-2} \left(\frac{u_{\epsilon}}{u_{\epsilon}} \right)^{\alpha-1} \nabla u \cdot \nabla v \leq \frac{1}{r} \left(\frac{u_{\epsilon}}{u_{\epsilon}} \right)^{s(\alpha-1)} \left| \nabla u \right|^{p} + \frac{1}{p} \left| \nabla v \right|^{p} \]
and
\[\left| \nabla v \right|^{p-2} \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right)^{\alpha-1} \nabla v \cdot \nabla u \leq \frac{1}{r} \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right)^{s(\alpha-1)} \left| \nabla v \right|^{p} + \frac{1}{p} \left| \nabla u \right|^{p}. \]
Using these inequalities, from (1.6) and (1.7) we find
\[\int_A \left\{ \left| \nabla u \right|^{p} \left[1 + (\alpha - 1) \left(\frac{u_{\epsilon}}{u_{\epsilon}} \right)^{\alpha} \right] - \alpha \left(\frac{u_{\epsilon}}{u_{\epsilon}} \right)^{q(\alpha-1)} - \frac{\alpha}{p} \right\} + \int_A \left\{ \left| \nabla v \right|^{p} \left[1 + (\alpha - 1) \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right)^{\alpha} \right] - \alpha \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right)^{r(\alpha-1)} - \frac{\alpha}{p} \right\} dx \leq L_{\epsilon}. \]
Putting
\[\varphi(t) = 1 + (\alpha - 1) t^{\alpha} - \frac{\alpha}{r} t^{r(\alpha-1)} - \frac{\alpha}{p}, \]
we have
\[\int_A \left\{ \left| \nabla u \right|^{p} \varphi \left(\frac{u_{\epsilon}}{u_{\epsilon}} \right) + \left| \nabla v \right|^{p} \varphi \left(\frac{u_{\epsilon}}{v_{\epsilon}} \right) \right\} dx \leq L_{\epsilon}. \quad (1.8) \]
Since
\[\lim_{\epsilon \to 0} u_{\epsilon} = u, \quad \lim_{\epsilon \to 0} v_{\epsilon} = v, \quad \lim_{\epsilon \to 0} L_{\epsilon} = 0, \]
as $\epsilon \to 0$, (1.8) yields

$$\int_A \left\{|\nabla u|^p \varphi\left(\frac{u}{v}\right) + |\nabla v|^p \varphi\left(\frac{u}{v}\right)\right\} dx \leq 0. \quad (1.9)$$

We have $\varphi(1) = 0$ and $\varphi'(t) = \alpha(\alpha - 1)t^{\alpha p - 2p + 1}(t^{p - \alpha} - 1)$, hence $\varphi(t) > 0$ for $t \neq 1$. Since $\frac{u}{v} > 1$ in A, by (1.9) we must have $|\nabla u| = |\nabla v| = 0$ in A. Hence, $\nabla (u - v) = 0$ in A and $u - v = 0$ on ∂A. Then, $u(x) = v(x)$, contradicting the definition of A. The theorem follows.

If $F \subset \mathbb{R}^N$ is a measurable set we denote with $|F|$ its Lebesgue measure. We say that two measurable functions $g_1(x)$ and $g_2(x)$ defined in Ω have the same rearrangement if (see [3, 14])

$$|\{x \in \Omega : g_1(x) \geq t\}| = |\{x \in \Omega : g_2(x) \geq t\}| \forall t \in \mathbb{R}.$$

Let $g_0(x)$ be a non-negative bounded function defined in Ω. We assume that $g_0(x) > 0$ in a subset of positive measure. We denote by $\mathcal{G} = \mathcal{G}(g_0)$ the class of functions g which have the same rearrangement as g_0. Moreover, we denote by $\overline{\mathcal{G}}$ the closure of \mathcal{G} in the weak* topology of $L^\infty(\Omega)$.

With $g \in \overline{\mathcal{G}}$, we consider the functional

$$J(g) = \int_\Omega \left(\frac{1}{\alpha} g u^\alpha - \frac{1}{p} |\nabla u|^p - \frac{1}{q} |\nabla u|^q\right) dx, \quad (1.10)$$

where u is the variational positive solution to problem (1.2). Observe that this function u satisfies

$$\int_\Omega \left(\frac{1}{\alpha} g u^\alpha - \frac{1}{p} |\nabla u|^p - \frac{1}{q} |\nabla u|^q\right) dx = \sup_{v \in H^1_0(\Omega), v \geq 0} \int_\Omega \left(\frac{1}{\alpha} g v^\alpha - \frac{1}{p} |\nabla v|^p - \frac{1}{q} |\nabla v|^q\right) dx,$$

and that, by Theorem 1.1, the superior is unique.

We are interested in the maximization and the minimization of the functional $J(g)$ for $g \in \overline{\mathcal{G}}$.

2 Optimization

We make use of the following results.

Lemma 2.1. Let $g : \Omega \to \mathbb{R}$ and $w : \Omega \to \mathbb{R}$ be measurable functions, and suppose that every level set of w has zero measure. Then there exists a non-decreasing function φ such that $\varphi(w)$ is a rearrangement of g. Furthermore, there exists a non-increasing function ψ such that $\psi(w)$ is a rearrangement of g.

Proof. The first assertion follows from Lemma 2.9 of [4]. The second assertion follows applying the first one to $-w$. \hfill \square

Recall that $\overline{\mathcal{G}}$ denotes the closure of \mathcal{G} in the weak* topology of $L^\infty(\Omega)$. It is well known that $\overline{\mathcal{G}}$ is convex and weakly sequentially compact (see for example [4], Lemma 2.2).

Lemma 2.2. Let \mathcal{G} be the set of rearrangements of a fixed function $g_0 \in L^\infty(\Omega)$, and let $w \in L^1(\Omega)$. If there is a non-decreasing function φ such that $\varphi(w) \in \mathcal{G}$ then

$$\int_\Omega gw\,dx \leq \int_\Omega \varphi(w)w\,dx \quad \forall g \in \overline{\mathcal{G}},$$

and the function $\varphi(w)$ is the unique maximizer relative to $\overline{\mathcal{G}}$. Furthermore, if there is a non-increasing function ψ such that $\psi(w) \in \mathcal{G}$ then

$$\int_\Omega gw\,dx \geq \int_\Omega \psi(w)w\,dx \quad \forall g \in \overline{\mathcal{G}},$$

and the function $\psi(w)$ is the unique minimizer relative to $\overline{\mathcal{F}}$.

Proof. The first assertion follows from Lemma 2.4 of [4]. The second assertion follows from the first one putting $\psi(t) = \varphi(-t)$.

\hfill \square

Theorem 2.3. Let Ω, g_0, \mathcal{G} and $\overline{\mathcal{G}}$ be as in above. If $J(g)$ is defined as in (1.10) for $g \in \overline{\mathcal{G}}$ then:

i) $J(g)$ is weakly continuous with respect to the weak* topology of $L^\infty(\Omega)$;

ii) $J(g)$ is Gâteaux differentiable with derivative $\frac{1}{\alpha}u^\alpha$ (here u is the variational positive solution to problem (1.2) corresponding to g);

iii) $J(g)$ is strictly convex on $\overline{\mathcal{G}}$.

Proof. Let $g_i \in \overline{\mathcal{G}}$, $g_i \rightharpoonup g$. We shall prove that

$$\lim_{i \to \infty} J(g_i) = J(g). \quad (2.1)$$

Indeed, if u_i is the solution to (1.2) corresponding to g_i, putting $\phi = u_i$ in that equation we find

$$\int_\Omega (|\nabla u_i|^p + |\nabla u_i|^q)\,dx = \int_\Omega g_i u_i^\alpha\,dx.$$

Since g_i is uniformly bounded, using Poincaré and Hölder inequalities we find

$$\int_\Omega |\nabla u_i|^p\,dx \leq C \int_\Omega |\nabla u_i|^\alpha \leq C \left(\int_\Omega |\nabla u_i|^p\,dx \right)^{\frac{\alpha}{p}}$$

\hfill \square
and
\[\int_{\Omega} |\nabla u_i|^p \, dx \leq C. \] (2.2)

Recall that we denote by \(C \) constants independent of \(i \). By (2.2), it follows that a subsequence (denoted again \(\{ u_i \} \)) converges weakly in \(H^{1,p}(\Omega) \) (as well as in \(H^{1,q}(\Omega) \)) and strongly in \(L^\alpha(\Omega) \) to some function \(z \in H^{1,p}_0(\Omega) \).

We claim that
\[\lim_{i \to \infty} \int_{\Omega} (g_i - g)(u_i^\alpha - z^\alpha) \, dx = 0. \]

Indeed, since
\[|(g_i - g)(u_i^\alpha - z^\alpha)| \leq C\alpha |u_i - z| \cdot |u_i + z|^{\alpha - 1} \]
we have
\[\left| \int_{\Omega} (g_i - g)(u_i^\alpha - z^\alpha) \, dx \right| \leq C\alpha \|u_i - z\|_{L^\alpha(\Omega)} \|u_i + z\|^{\alpha - 1}_{L^\alpha(\Omega)}. \]

Since \(u_i \to z \) strongly in \(L^\alpha(\Omega) \), the claim follows.

Since
\[\lim_{i \to \infty} \int_{\Omega} (g_i - g)z^\alpha \, dx = 0, \]
and since
\[0 = \lim_{i \to \infty} \int_{\Omega} (g_i - g)(u_i^\alpha - z^\alpha) \, dx = \lim_{i \to \infty} \int_{\Omega} (g_i - g)u_i^\alpha \, dx - \lim_{i \to \infty} \int_{\Omega} (g_i - g)z^\alpha \, dx \]
we find
\[\lim_{i \to \infty} \int_{\Omega} (g_i - g)u_i^\alpha \, dx = 0. \] (2.3)

Obviously, if \(u \) is the positive solution to problem (1.2) corresponding to \(g \) we also have
\[\lim_{i \to \infty} \int_{\Omega} (g_i - g)u^\alpha \, dx = 0. \] (2.4)

To conclude the proof of assertion i), we write
\[
J(g) + \int_{\Omega} \frac{1}{\alpha} (g_i - g)u^\alpha \, dx \\
= \int_{\Omega} \left(\frac{1}{\alpha} g_i u^\alpha - \frac{1}{p} |\nabla u|^p - \frac{1}{q} |\nabla u|^q \right) \, dx \\
\leq \int_{\Omega} \left(\frac{1}{\alpha} g_i u_i^\alpha - \frac{1}{p} |\nabla u_i|^p - \frac{1}{q} |\nabla u_i|^q \right) \, dx = J(g_i) \\
= \int_{\Omega} \frac{1}{\alpha} (g_i - g)u_i^\alpha \, dx + \int_{\Omega} \left(\frac{1}{\alpha} g u_i^\alpha - \frac{1}{p} |\nabla u_i|^p - \frac{1}{q} |\nabla u_i|^q \right) \, dx \\
\leq \int_{\Omega} \frac{1}{\alpha} (g_i - g)u_i^\alpha \, dx + J(g).
\] (2.5)
By (2.5), (2.3) and (2.4) we find (2.1), and assertion i) of the theorem is proved.

To prove assertion ii), we claim that the function \(z \) mentioned in above is equal to \(u \), the variational positive solution to problem (1.2) corresponding to \(g \). Indeed from

\[
\int_{\Omega} |\nabla z|^p \, dx \leq \liminf_{i \to \infty} \int_{\Omega} |\nabla u_i|^p \, dx,
\]

\[
\int_{\Omega} |\nabla z|^q \, dx \leq \liminf_{i \to \infty} \int_{\Omega} |\nabla u_i|^q \, dx,
\]

and (2.1) we find

\[
J(g) = \int_{\Omega} \left(\frac{1}{\alpha} g u^\alpha - \frac{1}{p} |\nabla u|^p - \frac{1}{q} |\nabla u|^q \right) \, dx
\]

\[
= \lim_{i \to \infty} J(g_i) = \lim_{i \to \infty} \int_{\Omega} \left(\frac{1}{\alpha} g_i u_i^\alpha - \frac{1}{p} |\nabla u_i|^p - \frac{1}{q} |\nabla u_i|^q \right) \, dx
\]

\[
\leq \lim_{i \to \infty} \int_{\Omega} \frac{1}{\alpha} g_i u_i^\alpha \, dx - \liminf_{i \to \infty} \int_{\Omega} \frac{1}{p} |\nabla u_i|^p \, dx - \liminf_{i \to \infty} \int_{\Omega} \frac{1}{q} |\nabla u_i|^q \, dx
\]

\[
\leq \int_{\Omega} \left(\frac{1}{\alpha} g z^\alpha - \frac{1}{p} |\nabla z|^p - \frac{1}{q} |\nabla z|^q \right) \, dx \leq J(g).
\]

It follows that

\[
\int_{\Omega} \left(\frac{1}{\alpha} g u^\alpha - \frac{1}{p} |\nabla u|^p - \frac{1}{q} |\nabla u|^q \right) \, dx = \int_{\Omega} \left(\frac{1}{\alpha} g z^\alpha - \frac{1}{p} |\nabla z|^p - \frac{1}{q} |\nabla z|^q \right) \, dx.
\]

By the uniqueness of the maximizer of

\[
-I(v) = \int_{\Omega} \left(\frac{1}{\alpha} g v^\alpha - \frac{1}{p} |\nabla v|^p - \frac{1}{q} |\nabla v|^q \right) \, dx
\]

for \(v \geq 0, v \in H_0^{1,p}(\Omega) \), we must have \(u = z \), as claimed.

In view of the latter result, (2.3) implies

\[
\lim_{i \to \infty} \int_{\Omega} g_i u_i^\alpha \, dx = \lim_{i \to \infty} \int_{\Omega} g u_i^\alpha \, dx = \int_{\Omega} g u^\alpha \, dx.
\]

Let \(t_i > 0 \) be a sequence of real numbers such that \(t_i \to 0 \) as \(i \to \infty \). Let \(h \in \mathcal{G} \) and let \(g_i = g + t_i (h - g) \). Then, by (2.5) we find

\[
J(g) + t_i \int_{\Omega} \frac{1}{\alpha} (h - g) u^\alpha \, dx \leq J(g + t_i (h - g)) \leq J(g) + t_i \int_{\Omega} \frac{1}{\alpha} (h - g) u_i^\alpha \, dx.
\]
It follows that
\[
\int_{\Omega} \frac{1}{\alpha} (h - g) u^\alpha \, dx \leq \frac{J(g + t_i(h - g)) - J(g)}{t_i} \leq \int_{\Omega} \frac{1}{\alpha} (h - g) u_i^\alpha \, dx. \tag{2.6}
\]

Since \(g_i \to g\) as \(i \to \infty\), \(u_i \to u\) in \(L^\alpha(\Omega)\). Therefore,
\[
\lim_{i \to \infty} \int_{\Omega} \frac{1}{\alpha} (h - g) u_i^\alpha \, dx = \int_{\Omega} \frac{1}{\alpha} (h - g) u^\alpha \, dx.
\]

Since the sequence \(t_i\) is arbitrary, from the latter equation and (2.6) we find
\[
\lim_{t \to 0^+} \frac{J(g + t(h - f)) - J(g)}{t} = \int_{\Omega} \frac{1}{\alpha} (h - g) u^\alpha \, dx.
\]

This proves assertion ii).

Let \(0 < t < 1\). If \(g_1, g_2 \in \overline{G}\) and \(g_t = tg_1 + (1 - t)g_2\), we have
\[
\int_{\Omega} \left(\frac{1}{\alpha} g_t v^\alpha - \frac{1}{p} |\nabla v|^p - \frac{1}{q} |\nabla v|^q \right) \, dx \\
= t \int_{\Omega} \left(\frac{1}{\alpha} g_1 v^\alpha - \frac{1}{p} |\nabla v|^p - \frac{1}{q} |\nabla v|^q \right) \, dx \\
+ (1 - t) \int_{\Omega} \left(\frac{1}{\alpha} g_2 v^\alpha - \frac{1}{p} |\nabla v|^p - \frac{1}{q} |\nabla v|^q \right) \, dx.
\]

If we take the superior for \(v \in H_0^{1,p}(\Omega)\) in both sides of this equation we find
\[
J(g_t) \leq tJ(g_1) + (1 - t)J(g_2).
\]

To prove strict convexity, assume equality holds in the latter inequality for some \(0 < t < 1\). If \(u_t, u_1\) and \(u_2\) are the solutions corresponding to \(g_t, g_1\) and \(g_2\) respectively, then we have
\[
t \int_{\Omega} \left(\frac{1}{\alpha} g_1 u_t^\alpha - \frac{1}{p} |\nabla u_t|^p - \frac{1}{q} |\nabla u_t|^q \right) \, dx \\
+ (1 - t) \int_{\Omega} \left(\frac{1}{\alpha} g_2 u_t^\alpha - \frac{1}{p} |\nabla u_t|^p - \frac{1}{q} |\nabla u_t|^q \right) \, dx \\
= t \int_{\Omega} \left(\frac{1}{\alpha} g_1 u_1^\alpha - \frac{1}{p} |\nabla u_1|^p - \frac{1}{q} |\nabla u_1|^q \right) \, dx \\
+ (1 - t) \int_{\Omega} \left(\frac{1}{\alpha} g_2 u_2^\alpha - \frac{1}{p} |\nabla u_2|^p - \frac{1}{q} |\nabla u_2|^q \right) \, dx.
\]
It follows that
\[
\int_{\Omega} \left(\frac{1}{\alpha} g_1 u_t^\alpha - \frac{1}{p} |\nabla u_t|^p - \frac{1}{q} |\nabla u_t|^q \right) dx
\]
\[
= \int_{\Omega} \left(\frac{1}{\alpha} g_1 u_1^\alpha - \frac{1}{p} |\nabla u_1|^p - \frac{1}{q} |\nabla u_1|^q \right) dx
\]
and
\[
\int_{\Omega} \left(\frac{1}{\alpha} g_2 u_t^\alpha - \frac{1}{p} |\nabla u_t|^p - \frac{1}{q} |\nabla u_t|^q \right) dx
\]
\[
= \int_{\Omega} \left(\frac{1}{\alpha} g_2 u_2^\alpha - \frac{1}{p} |\nabla u_2|^p - \frac{1}{q} |\nabla u_2|^q \right) dx.
\]
By uniqueness we must have \(u_t = u_1 = u_2 \), and
\[-\Delta_p u_t - \Delta_q u_t = g_1 u_t^{\alpha - 1} \text{ a.e. in } \Omega \]
and
\[-\Delta_p u_t - \Delta_q u_t = g_2 u_t^{\alpha - 1} \text{ a.e. in } \Omega. \]
Since \(g_1(x) \geq 0 \) and \(g_1(x) \not\equiv 0 \), by the strong maximum principle \(u_t(x) > 0 \). It follows that \(g_1(x) = g_2(x) \) a.e. in \(\Omega \), which yields strict convexity of \(J(g) \).

The theorem is proved. \(\square \)

Theorem 2.4. Let \(\Omega, g_0, \mathcal{G} \) and \(\mathcal{G} \) be as in above. Let \(J(g) \) be defined as in (1.10) for \(g \in \mathcal{G} \).

i) The problem
\[
\max_{g \in \mathcal{G}} J(g)
\]
has a solution \(\hat{g} \). Moreover, if \(\hat{g} \) is any solution and if \(\hat{u} = u_{\hat{g}} \) then we have \(\hat{g} = \varphi(\hat{u}) \)
where \(\varphi \) is some non-decreasing function.

ii) The problem
\[
\min_{g \in \mathcal{G}} J(g)
\]
has a unique solution \(\tilde{g} \). Moreover, if \(\tilde{u} = u_{\tilde{g}} \) we have \(\tilde{g} = \psi(\tilde{u}) \), where \(\psi \) is some non-increasing function.

Proof. By Theorem 2.1, \(J(g) \) is weakly continuous and strictly convex. Therefore, assertion i) follows by Theorem 7 of [3].

Let us prove assertion ii). The uniqueness follows by the strict convexity of \(J(g) \). To prove existence, let
\[
\tilde{J} = \inf_{g \in \mathcal{G}} J(g),
\]
and let \(\{g_i\} \) be a sequence such that

\[
\bar{J} = \lim_{i \to \infty} J(g_i).
\]

Since \(\mathcal{G} \) is weakly compact we can assume that for some subsequence of \(\{g_i\} \) (again denoted \(\{g_i\} \)) there is \(\hat{g} \in \mathcal{G} \) with \(g_i \rightharpoonup \hat{g} \) in the weak* topology of \(L^\infty(\Omega) \). By Theorem 2.3, we have \(\bar{J} = J(\hat{g}) \). Let us show that \(\hat{g} \in \mathcal{G} \). If \(g \in \mathcal{G} \), if \(0 < t < 1 \) and if \(g_t = tg + (1 - t)\hat{g} \), since \(J(g) \) is Gâteaux differentiable (by Theorem 2.3) we have,

\[
J(\hat{g}) \leq J(g_t) = J(\hat{g}) + t \int_{\Omega} (g - \hat{g}) \frac{1}{\alpha} u^\alpha \, dx + o(t) \quad \text{as} \quad t \to 0.
\]

Hence,

\[
\int_{\Omega} (g - \hat{g}) \frac{1}{\alpha} u^\alpha \, dx \geq 0.
\]

Equivalently,

\[
\int_{\Omega} g u^\alpha \, dx \geq \int_{\Omega} \hat{g} u^\alpha \, dx \quad \forall g \in \mathcal{G}.
\] (2.7)

On the other hand, by equation (1.2) it follows that the function \(u \) (and the function \(u^\alpha \)) cannot have flat zones in the set

\[
E = \{ x \in \Omega : \hat{g}(x) > 0 \}.
\]

Consider first the case \(|E| = |\Omega| \). Then, by Lemma 2.1 there is a non-increasing function \(\psi \) such that \(\psi(u^\alpha) \) is a rearrangement of \(\hat{g} \). By (2.7) and Lemma 2.2 we must have \(\hat{g} = \psi(u^\alpha) \in \mathcal{G} \).

If \(|E| < |\Omega| \), since \(\hat{g} \in \mathcal{G} \), by Lemma 2.14 of [4] we have

\[
|E| \geq |\{ x \in \Omega : g_0(x) > 0 \}|.
\]

Then there is \(g_1 \in \mathcal{G} \) such that its support is contained in \(E \). By Lemma 2.1 there is a non-increasing function \(\psi_1(t) \) such that \(\psi_1(u^\alpha) \) is a rearrangement of \(g_1 \) on \(E \).

Define

\[
m = \inf_{x \in \Omega \setminus E} u^\alpha(x).
\]

By using (2.7) one proves that \(u^\alpha(x) < m \) in \(E \) (see [5, 8, 9] for details). Now define

\[
\tilde{\psi}(t) = \begin{cases}
\psi_1(t) & \text{if } 0 \leq t < m \\
0 & \text{if } t \geq m.
\end{cases}
\]

The function \(\psi(t) \) is non-increasing and \(\psi(u^\alpha) \) is a rearrangement of \(g_1(x) \) in \(\Omega \). Indeed, the functions \(g_1 \) and \(\psi(u^\alpha) \) have the same rearrangement on \(E \), and both vanish on \(\Omega \setminus E \). By Lemma 2.2 we must have \(\hat{g} = \psi(u^\alpha) \in \mathcal{G} \). The theorem is proved. \(\square \)
References

Feyissa Kebede
Adama Science and Technology University,
Department of Applied Mathematics,
Adama, Ethiopia
E-mail: feyissake11@gmail.com