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Abstract: In this paper, we present an encryption and decryption
scheme based on the use of the discrete logarithm problem in elliptic
curves. Our cryptosystem is inspired from Harn and Yang work. We
show that the method is as secure as the ElGamal equivalent, and has
a 1:1 expansion ratio. We also analyze the protocol security, discuss its
running time and give a numerical example.
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1 Introduction

The last three decades have seen enormous changes in cryptography. In the year 1976
Diffie and Hellman introduced to the world what’s come to be known as public-key
cryptography. As they explained in their article [7], the purpose of a key exchange
protocol is to agree upon a shared key between two correspondents over an insecure
channel. And a third person can not extract the common key from their intercepted
communication.

Consequently, many other researchers explored this idea, and asymmetric encryption
schemes appeared. The first one was RSA [20] proposed by Rivest et al. in 1977.
Two years later, Rabin published his Cryptosystem [19], in which, it was proved,
for the first time, that recovering the message from the cipher-text was as hard as
factoring. And in 1984 ElGamal [8] devised a probabilistic encryption method with
one caveat, that the cipher-text is twice the size of the plain-text. Simultaneously,
asymmetric cryptography gave birth to digital signature schemes such as RSA, DSA
and ECDSA [20, 15].

Meanwhile, the interest of elliptic curves in cryptography begins to grow. Especially,
since the publications of Miller [18] in 1985 and Koblitz [16] in 1987. According to
Blake et al. [3, p. 9], it is estimated that a key size of 173 bits for an elliptic curve
system gives the same security level as 1024 bits in RSA. Which explains its interest
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especially for systems with memory constraints and low computing power. Such as
smart cards and network equipment.

At first, the use of elliptic curve cryptology was esoteric and complex to implement.
But then new discoveries were made and researchers became well aware of its bene-
fits. In 1985, Schoof [22] was the first to present an algorithm able to count elliptic
curve points in a polynomial time. In 1999 Satoh [21] came up with a better method
that works with very small characteristics. With growing popularity, elliptic curves
attracted the interest of cryptanalysts. Like the Weil descent attack introduced by
Frey in 1998 [10]. This attack aims to undermine the elliptic curve discrete loga-
rithm problem by using Weil restriction of scalars for elliptic curves. In 2002 this
idea was further developed by Gaudry et al. [11]. In 2000 Joux [14] published a
paper where he proposed a three persons version of Diffie-Hellman protocol. Thus,
pairing on elliptic curves appears to offer the most efficient way for implementing
identity based cryptosystems. Such as Boneh’s scheme [4], which is based on the
WEeil pairing.

With an added complexity, elliptic curve schemes have many advantages over the
classical ones. Therefore elliptic curve implementations of almost every crypto-
graphic algorithm were developed. Including cryptosystems [16, 6] and digital sig-
natures [1].

In this work, we present a new cryptosystem based on elliptic curves and the ideas of
Harn and Hang [13]. We discuss and analyze the security of the proposed protocol.
The rest of this paper is organized as follows. In section two, elliptic curve group is
reviewed. In section three, we recall how to map text to points belonging to elliptic
curves. Then, an elliptic curve analog of ElGamal cryptosystem [8] is presented.
After that, Harn and Yang algorithm [13] is described. In section four we explain
our proposed protocol, calculate its running time and analyze its security. And in
the last section the conclusion.

Let p be a prime number. We will use GF(p) to mean a finite field of all modular
integers less than p. The set of integers is Z. Let a,b,c € Z. The equivalence
a = b (mod ¢) is used when ¢ divides (a — b), and a = b mod ¢ means that a is the
remainder of b/c.

Let’s start by recalling elliptic curves group.

2 Overview of elliptic curve group

Elliptic curves have many applications in a variety of mathematical fields. Including
encryption [18, 16] and factoring integers [17]. And they were used in number theory
to prove Fermat’s Last Theorem [25].

We mean by elliptic curve E(K) an irreducible non-singular projective algebraic
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curve of genus one with a point at infinity O, defined over a field K with char(K) #
2; 3. It is the set of all solutions (z,y) for the equation:

y2 + a1xy + azy = 1‘3 + GQZL‘Q + a4x + ag

The point O plays the role of the neutral element in addition. By change of variables
we obtain a simple Weierstrass equation [23] which we will use from now on:

v =23 +ar+b

with a,b € K and the discriminant A = —16(4a® + 27b?) # 0. Which means that
the equation above defines a non-singular curve. i.e., its graphic representation has
no isolated points, cusps, or self-intersections. The graph of a real elliptic curve has
two components when A < 0, and it has one component when A > 0.

We are interested in elliptic curves over a field F,,, where p is prime. We define
Ep(a,b) over Fp as {(z,y) € F, x F, | y?> = 23 + ax + b (mod p)} U {O}, with
a,be {1,2,...,p— 1} and 4a® + 276> # 0 ( mod p).

Definition 2.1. Let P(x1,y1) and Q(x2,y2) be two points on E,(a,b). Let R(x3,ys3)
be the sum of P and ) We can define addition of two points as follows. First, when

P and @ are the same point, i.e., point doubling, there are two cases. If y; = 0 then
R=0. If y; # 0 then

322 +a

r3 =M —2x1 (mod p), A= ( mod p)

Y3 = Mx1 — x3) — y1 (' mod p)

And when P # @, then we have:

3=\ — 11 — 19 ( Mod p), A= 2-9%

d
p— ( mod p)

Y3 = Mx1 — 23) — y1 (( mod p)

The set of the points of elliptic curve plus a point at infinity O, equipped with
addition constitute a group. Moreover it is a finite abelian group.

3 Previous work

We first recall how to represent a message by mean of points in elliptic curve.
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3.1 How to encode a message by elliptic curves

The encryption and decryption processes are done on points in elliptic curve. The
representation of messages as points in an elliptic curve is performed using mapping
algorithms such as in reference [9]. The method presented here can be found in [24,
p. 174]

Let p be a prime and m a message such 0 < m < — 1,500 < 100m + 100 < p

b
100
which means:

Vie {0,1,2,...,99},0 < 100m +i < p

Let x; = 100m + 4 for all ¢ € {0,1,2,...,99}. As ¢ can be seen as the reminder of z;
by m, knowing any x; suffices to get m.
Half the elements of GF(p) are quadratic residues modulo p, because p is prime.
Let’s pose:

2 = (23 + ax; + b) (mod p)

There is a probability of 2719 that all z; are not perfect squares modulo p. So
there is a big chance to find an element z;, satisfying the relation above and at the
same time it is a quadratic residue modulo p. Let y be an integer in {0,...,p— 1} as
i, = y* (mod p). On one hand, we can calculate y, especially if p is a Blum prime.
i.e. p =3 (mod 4). On the other hand, the point (z;,,y) is in the elliptic curve
E,(a,b) because it verifies its equation.

Now we review the elliptic curve analog of ElGamal cryptosystem as explained in
[12, p. 14] and [16].

3.2 ElGamal elliptic curve cryptosystem

Let E,(a,b) be a fixed finite elliptic curve. In order for Bob to receive a message
m over an insecure channel from Alice, he needs to select a point G with a large
order n, he chooses a private key d randomly in {1,...n} and calculates A = dG. He
publishes the elliptic curve public key parameters (p,a,b, G, A, n).

If Alice likes to send a message M in Ej(a,b) to Bob, she selects a random number
k and calculates two point C7 = kG and Cy = M + kA, then she sends C7 and Cy
to Bob.

We have Cy —dCy = M + kA — d(kG) = M + kA — k(dG) = M. Upon reception of
C and (5, Bob computes M by M = Cy — dC}.

To select a generator in an elliptic curve Ej(a,b), the point must have an order equal
to the cardinality of E,(a,b). We can choose an EC with prime cardinality, in this
case all the points are generators. References [2, 5] explain how to construct elliptic
curve with prime order.
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3.3 Harn and Yang Method

The scheme of Lein Harn and Shoubao Yang [13] is described in three steps:

Step 1 : Distribution

Let p be a prime of the form p = 2p’ + 1, where p’ is also a prime ( p is a safe prime).
Let a be a generator in GF'(p). Alice selects her secret key z,, then she publishes
her public key y, = a®* (mod p). Bob takes ky randomly in {1,2,...,p — 1}, so that
Kap = (ya)® (mod p) is a primitive element modulo p’. Then Bob calculates his
public session key y, = o (mod p), and he transmits y, to Alice. Which computes
the session shared key Kap = (yp)** (mod p).

Step 2 : Encryption

Let’s suppose that Bob wants to send the following messages {m1,ma,...,m,} to
Alice. For every i he determines:

Kii=Ki_11Kap = (Kap)' (mod p')  ,Ko1=1
Ki2 = afi1 (mod p)

He calculates the cipher-text C; of the message m; by : C; = K; 2m; (mod p). Then,
Bob sends {C1,Cy, ...,Cy} to Alice.

Step 3 : Decryption

To decipher all C; Alice uses the following equation:

m; = C’i(Kw)*l (mod p)

The inverse of K; 2 modulo p can be obtained without knowing K;2. We have 1 =
Pt = o1t P=1=Kin) = K 5aP~ 1Kt (mod p), so (Ki2) ™' = a?~1 Kt (mod p)

4 QOur contribution

4.1 Presentation of the protocol

We describe our algorithm in three phases:

Key agreement: Bob and Alice agree on a generator G in a cyclic elliptic curve
E defined by a and b modulo a prime p of the form p = 2p’ + 1, where p’ is also a
prime.

As in Diffie-Hellman protocol [7], Alice and Bob choose k, and k; randomly in
{1,...,p — 1} as their respective secrets. Then, Alice sends k,G to Bob, who sends
her back k;G. Thus, they both have a common key Kap = k. kpG.

Encryption: We suppose that Bob wants to send to Alice multiple messages
{Mai, ..., M;}. For every i he computes:

Kin=iKap=Ki—11+ Kap , with Ko1 =0
Ki» =G+ K
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Then, he calculates C; the cipher point of M; by : C; = K;2 + M;. And he sends
{C4,Cy, ...,C1} to Alice.

Decryption: Upon reception of {C1,Co,...,C;}, Alice can get {M;, Mo, ..., M;} by
the equation M; = C; — K; 2. Because she is able to compute K for every i.

Example 4.1. Let E be an elliptic curve defined by y? = 23 + x + 6 over GF(p),
with p = 2.1289 + 1 = 2579. And let the generator be the point G = (2573, 1140).
To create the shared key K4p, Alice selects k, = 1327 and sends k,G = (2456, 629)
to Bob, who chooses a random number too k, = 1987 and sends kyG = (187, 823)
back to her. Now they both can calculate Kap = ko kyG = (1770, 154).
To encipher these three points M; = (2,2575) My = (3,2573) M3 = (2254, 2554).
We have to compute their corresponding K; 1 and K; 5 :
K1 =Kap = (1770,154) Ki, =G + K1 = (2562, 216)
Kgyl =2Kp = (2089, 1110) K272 =G+ K271 = (619, 1688)
K3y =3Kap = (666,333) Kz =G + K3 = (1028,2059)
From which we calculate the corresponding cipher points:
Cq = KLQ + My = (1435, 2480)
Cy = Koo + My = (1481, 2389)
C3 = K3+ M = (1758,1479)
By deciphering the points we get the plain points we started with:
My = Cy — Ky = (2,2575)
My = Cy — Ky 9 = (3,2573)
Mz = C3 — K39 = (2254, 2554)

4.2 Running time and Discussion

Let ty,qq and t,,,+ be respectively the times needed to perform point addition and
a scalar multiplication. Key setup needs 4t,,uir (ko G, koG, ko(kpG) and ky(koG)).
Suppose that the correspondent wants to send just one message. In encryption, three
additions are executed. Plus one more addition for deciphering. In total encryption
and decryption cost 4t,4q for every message sent. Note that we don’t make use of
multiplication except in key exchange. Which represents a huge computation gain
in comparison to other algorithms.

In ElGamal cryptosystem [8], encrypting the same message twice generates different
cipher-texts, which gives it an advantage over RSA [20]. But, with the inconvenience
of a 2:1 expansion of the plain-text’s length after encryption. i.e., two cipher-texts
are generated for each message. Our method keeps the probabilistic aspect of the
ElGamal’s algorithm with a 1:1 expansion ratio, one cipher-text for each message,
thus decreasing network bandwidth utilization by half.
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4.3 Security analysis

Since there are no proven techniques to demonstrate the security of a encryption
scheme. All we can do is to see whether there is a way to break it. Also, we can
check it against known attacks. Let Eve be Alice’s opponent. Let’s evaluate her
possible attacks.

1. Chosen plain-text attack:

Eve can obtain an encryption key K;». But getting K;; from K;» = G + K, is
considered as hard as solving discrete logarithm problem.

Knowing K;» does not allow Eve to get K; 12 nor K;_i2, since K;» = G + K; 1
and K112 = G+ (K;1.Kap). And she does not know K4p the session common
secret key.

2. Known plain-text attack:

If, somehow, Eve got hold of two cipher-texts C; = K; 2 + M and C; = Kj2 + M of
a known message M. She could not extract neither K;2 nor Kj2. In the case when
C; and Cj are generated during the same session. She can’t get the session secret
key Kap. If C; and C; are generated during two different sessions. Then there is
no relation between K;o and K2, so Eve can’t get K4p.

Note that C; and C} can not be equal, because k, and k; are chosen randomly and
they are tested to be different from used keys in precedent sessions.

3. Cipher-text attack:

We have C; = K; 2+ M;. Since Eve does not know K », she cannot obtain M;. Even
if she has K, obtaining M; from the last equation is considered to be as hard as
the elliptic curve discrete logarithm problem.

5 Conclusion

In this work, we presented a variant of a Diffie and Hellman cryptosystem over
elliptic curves. We also analyzed the protocol security and calculated its running
time.
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