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1 Introduction

Fixed point theory for admissible maps in the sense of Gorniewicz have been dis-
cussed extensively in the literature; we refer the reader to [2] and the references
therein. In 1980, Monch [3] presented a fixed point result which extends Schauder
and Sadovskii’s fixed point results and Monch’s result was particularly useful in es-
tablishing existence results in differential equations. Moénch theorem was extended
by many authors [4, 5, 6] and in particular O’Regan and Precup [5] presented a
Monch fixed point theorem for Kakutani maps. In this paper we present a Moénch
type result for admissible maps in the sense of Gorniewicz.

Now we introduce the class of maps considered in Section 2. Let H be the
Cech homology functor with compact carriers and coefficients in the field of ratio-
nal numbers K from the category of Hausdorff topological spaces and continuous
maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X)={Hy(X)} (here X is a Hausdorff topological space) is a graded vector space,
H,(X) being the g-dimensional Cech homology group with compact carriers of X.
For a continuous map f : X — X, H(f) is the induced linear map f, = {fiq}
where fiq : Hy(X) — Hy(X). A space X is acyclic if X is nonempty, Hy(X) =0
for every ¢ > 1, and Hy(X) ~ K.

Let X, Y and T’ be Hausdorff topological spaces. A continuous single valued
map p: ' — X is called a Vietoris map (written p : I' = X) if the following two
conditions are satisfied:
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(i). for each x € X, the set p~!(z) is acyclic
(ii). p is a perfect map i.e. p is closed and for every x € X the set p~!(x) is
nonempty and compact.

Let D(X,Y) be the set of all pairs X & T' % Y where p is a Vietoris map
and ¢ is continuous. We will denote every such diagram by (p,q). Given two
diagrams (p,q) and (p/,¢'), where X Zp4 Y, we write (p,q) ~ (p,q') if there
are continuous maps f:I' = IV and ¢g : IV — I" such that ¢ o f =¢q, p'o f =p,
gog=¢ and pog=yp'. The equivalence class of a diagram (p,q) € D(X,Y) with
respect to ~ is denoted by

p={XETLV)}: XY

or ¢ = [(p,q)] and is called a morphism from X to Y. We let M(X,Y) be the
set of all such morphisms. Note if (p,q), (p1,q1) € D(X,Y) (where X Lriy
and X &£ 1V 4 Y) and (p,q) ~ (p1,q1) then it is easy to see (use gog = ¢; and
pog = p1 where g : I” — T') that for € X we have ¢1 (p; '(z)) = ¢(p~'(2)). For
any ¢ € M(X,Y) aset ¢(x) =qp ! (z) where ¢ = [(p,q)] is called an image of =
under a morphism ¢. Let ¢ € M(X,Y) and (p, q) a representative of ¢. We define
#(X) CY by ¢(X) = q(p~1(X)). Note ¢(X) does not depend on the representative
of ¢.

A map ¢ : X — 2Y is said to be admissible [2] and we write ¢ € Ad(X,Y)
provided there exists a Hausdorff topological space I and a selected pair (p, q) (i.e.

XETL X)of ¢ (ie. (p,q) Chie qp'(zx)) C d(x) for every z € X).

2 Fixed Point Theory

We present our main result.
Theorem 2.1. Let X be a metrizable topological vector space and ¢ € Ad(X,X).
Suppose there exists a Hausdorff topological space T' and a selected pair (p,q) (i.e.
XETS X)of ¢ with
ACT, A=pt(e({xo}Uq(A))) with CC A
countable and p(C) =7co ({zo} Uq(C)), (2.1)
implies ¢o(q(C)) is compact

where xo € p(I'). Finally assume

any ¥ € Ad(K,K) we have that ¢ has a fized point. (2:2)

Then ¢ has a fixed point.

{ for any nonempty convexr compact subset K of X and
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Remark 2.2. In the proof below we see that X metrizable can be replaced by any
space with the following properties: (i). X is such that the closure of a subset € of
X is compact if and only if Q is sequentially compact, and (ii). for any convex set
D C X if z € D then there exists a sequence x1, o2, .... in D with z,, converging to
x.

Remark 2.3. In (2.1) in fact ¢o (¢(C)) is compact implies ¢o (¢(A)) is compact (see
the proof below).

Remark 2.4. Conditions to guarantee (2.2) can be found in [2].

Proof. Let p, ¢ be as described in the statement of Theorem 2.1 and let F be the
family of all subsets D of I' with p~!(¢o({zg} Uq(D))) C D. Note F # () since
I' € F (recall p is surjective). Let

Do =NperD and Dy = p_l (@({J}Q} U q(D()))) .

We now show D; = Dy. Now for any D € F we have since Dy C D that

Dy =p~* (co ({xo} Ua(Do))) S p~* (e ({zo} Ua(D))) € D,

so as a result Dy C Dy. Also since D; C Dy we have ¢q(D;) C g(Dg) so

p~* (@0 ({20} Uq(D1))) € p~ " (co ({zo} Ug(Do))) = D1,

and as a result Dy € F, so Dy C D;. Consequently

Dy =p~ (0 ({zo} Uq(Dy))). (2.3)

We now claim
co (q(Dg)) is compact. (2.4)

Suppose the claim is false. Then there exists a sequence y1, Y2, .... in o ({z¢}Uq(Dy))
without a convergent subsequence. Let Ay = {y1,92,....}. Each y, is the limit of
a sequence of finite convex combination of points from {xo} U ¢(Dy) so there exists
a countable set Qo C {xo} U q(Dyp) with y, € o (Qo) for each n. In particular
there exists a countable set C1 C Dy with vy, € ¢o ({xo} U¢q(C1)) for each n; note
Ao € 2o ({zo} Uq(Ch)).

Next we construct a countable set Co C Dy with Cy C Cs, p(Cy) C co ({xo} U
q(C3)) and o ({zo} U q(C1)) C p(Cs). To see this first note

C1 C Do = p~" (co ({0} U q(Do)))

so p(C1) C @o({xo} U q(Dy)). Now p(Cy) is countable (since p is single valued
and C; is countable). Note each x € p(C;) is the limit of a sequence of finite
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convex combination of points from {z} U g(Dy). Then there exists a countable set
Q1 C {xo} Uq(Do) with p(Cy) C €0 (Q1). In particular there exists a countable set
A2 g Dg with

p(C1) Ceo({zo} Ug(Az)). (2.5)
Next note since C; C Dy that p~* (¢o ({9} Uq(Ch))) € p~! (co ({zo} Uq(Dy))) =
Dy (see (2.3)) so

{weT: p(w) €co({zo}Uq(Cy))} C Dy.
Now since p is surjective then

o ({zo} U q(C1)) =20 ({zo} U q(C1)) Np(T') € p(Do);

to see this note if x € o ({zo} U q(Cy)) N p(T") then there exists y € T' with = €
co ({zo} Uq(C1)) and = = p(y), and note p(y) (= x) € ¢o ({xo} Uq(C1)) so from the
above y € Dy i.e. x = p(y), y € Dy i.e. © € p(Dy). Thus éo ({xo} Uq(Cy)) C p(Do).
Next note co ({zo} Uq(C1)) is separable (recall the convex hull of a countable set is
separable) so there exists a countable set Qo C X with Qo C co ({0} Uq(C1)) € Qo
and since ¢o ({zo} U q(C1)) € p(Dp) we have Qo C p(Dg). Thus there exists a
countable set By C Dy with Qo C p(B2) and as a result

o ({zo} Uq(C1)) = Qo S p(B2). (2.6)

Let Cy = C1 U Ay U By. Note C7 € Cy, Cy C Dy (Since Ay C Dy, C1 € Dy and
By C Dy) and since Ay C Cy and By C Co we have from (2.5) and (2.6) that

p(C1) Ceo({wo} Ug(Ch)) and co({zo} Uq(Cr)) € p(Ca).

Proceed (as above) and we obtain countable sets C3, Cy,.... with C,, C Dy for
ne{l,2,..}, C, CCpy forn € {1,2,...},

p(Cp) Ceo({zo} Uq(Cry1)) for ne{1,2..}

and
co ({xo} Uq(Ch)) Cp(Cpy1) for ne{1,2..}.
Let C = U2, Cy,. For each z € p(C) = p(Us2; Cy,) we have x € p(C),) for some
ne€{1,2,..} so
z €0 ({xo} Uq(Cnta)) S co({zo} Ug(C)).

Thus
p(C) Ceo({zo} Uq(C)). (2.7)
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Also since C1 C Cy C ... (so q(C1) C q(Cs) C ...) we have

co({zo} Uq(C)) = co ({zo} Uq(UpZy Cn)) = co ({zo} U [UnZ; a(Ch)])
C Uplyco({ro}Uq(Cr)) € UpZy p(Cryr) € p(C)

since p(Cy) C p(C) for n € {1,2,...}. Thus

@0 ({zo} Ugq(C)) C p(C)

and this together with (2.7) yields

p(C) =0 ({zo} U q(C)).

Now (2.1) guarantees that ¢o ({zo} U ¢(C)) is compact. This is a contradiction
since ¢o ({0} U ¢(C)) contains the sequence {y,} (note Ay C ¢o({zo} Uq(C1)) C
¢o ({xo} U ¢(C))) which has no convergent subsequence.

Thus (2.4) holds i.e co(q(Dy)) is compact. For convenience let K = ¢o (q(Dy)).
Note from (2.3) that p~'(K) C Dy so q(p~'(K)) C ¢(Dg) € K. Also note K £
p H(K) M K where py and ¢y denote contractions of the appropriate maps p and
q (see [1 pp 214]). Thus ¢ € Ad(K,K). Now (2.2) guarantees that ¢ has a fixed
point. ]
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