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1 Introduction

Fixed point theory for admissible maps in the sense of Gorniewicz have been dis-
cussed extensively in the literature; we refer the reader to [2] and the references
therein. In 1980, Mönch [3] presented a fixed point result which extends Schauder
and Sadovskii’s fixed point results and Mönch’s result was particularly useful in es-
tablishing existence results in differential equations. Mönch theorem was extended
by many authors [4, 5, 6] and in particular O’Regan and Precup [5] presented a
Mönch fixed point theorem for Kakutani maps. In this paper we present a Mönch
type result for admissible maps in the sense of Gorniewicz.

Now we introduce the class of maps considered in Section 2. Let H be the
C̆ech homology functor with compact carriers and coefficients in the field of ratio-
nal numbers K from the category of Hausdorff topological spaces and continuous
maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space,
Hq(X) being the q–dimensional C̆ech homology group with compact carriers of X.
For a continuous map f : X → X, H(f) is the induced linear map f? = {f? q}
where f? q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty, Hq(X) = 0
for every q ≥ 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued
map p : Γ → X is called a Vietoris map (written p : Γ ⇒ X) if the following two
conditions are satisfied:
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(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is
nonempty and compact.

Let D(X,Y ) be the set of all pairs X
p⇐ Γ

q→ Y where p is a Vietoris map
and q is continuous. We will denote every such diagram by (p, q). Given two

diagrams (p, q) and (p′, q′), where X
p′⇐ Γ′

q′→ Y , we write (p, q) ∼ (p′, q′) if there
are continuous maps f : Γ → Γ′ and g : Γ′ → Γ such that q′ ◦ f = q, p′ ◦ f = p,
q ◦ g = q′ and p ◦ g = p′. The equivalence class of a diagram (p, q) ∈ D(X,Y ) with
respect to ∼ is denoted by

φ = {X p⇐ Γ
q→ Y } : X → Y

or φ = [(p, q)] and is called a morphism from X to Y . We let M(X,Y ) be the

set of all such morphisms. Note if (p, q), (p1, q1) ∈ D(X,Y ) (where X
p⇐ Γ

q→ Y

and X
p1⇐ Γ′

q1→ Y ) and (p, q) ∼ (p1, q1) then it is easy to see (use q ◦ g = q1 and
p ◦ g = p1 where g : Γ′ → Γ) that for x ∈ X we have q1 (p−11 (x)) = q (p−1(x)). For
any φ ∈M(X,Y ) a set φ(x) = q p−1 (x) where φ = [(p, q)] is called an image of x
under a morphism φ. Let φ ∈M(X,Y ) and (p, q) a representative of φ. We define
φ(X) ⊆ Y by φ(X) = q (p−1(X)). Note φ(X) does not depend on the representative
of φ.

A map φ : X → 2Y is said to be admissible [2] and we write φ ∈ Ad(X,Y )
provided there exists a Hausdorff topological space Γ and a selected pair (p, q) (i.e.

X
p⇐ Γ

q→ X) of φ (i.e. (p, q) ⊂ φ i.e. q (p−1(x)) ⊂ φ(x) for every x ∈ X).

2 Fixed Point Theory

We present our main result.

Theorem 2.1. Let X be a metrizable topological vector space and φ ∈ Ad(X,X).
Suppose there exists a Hausdorff topological space Γ and a selected pair (p, q) (i.e.

X
p⇐ Γ

q→ X) of φ with
A ⊆ Γ, A = p−1 (co ({x0} ∪ q(A))) with C ⊆ A
countable and p(C) = co ({x0} ∪ q(C)),
implies co (q(C)) is compact

(2.1)

where x0 ∈ p(Γ). Finally assume{
for any nonempty convex compact subset K of X and
any ψ ∈ Ad(K,K) we have that ψ has a fixed point.

(2.2)

Then φ has a fixed point.
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Remark 2.2. In the proof below we see that X metrizable can be replaced by any
space with the following properties: (i). X is such that the closure of a subset Ω of
X is compact if and only if Ω is sequentially compact, and (ii). for any convex set
D ⊆ X if x ∈ D then there exists a sequence x1, x2, .... in D with xn converging to
x.

Remark 2.3. In (2.1) in fact co (q(C)) is compact implies co (q(A)) is compact (see
the proof below).

Remark 2.4. Conditions to guarantee (2.2) can be found in [2].

Proof. Let p, q be as described in the statement of Theorem 2.1 and let F be the
family of all subsets D of Γ with p−1 (co ({x0} ∪ q(D))) ⊆ D. Note F 6= ∅ since
Γ ∈ F (recall p is surjective). Let

D0 = ∩D∈F D and D1 = p−1 (co ({x0} ∪ q(D0))) .

We now show D1 = D0. Now for any D ∈ F we have since D0 ⊆ D that

D1 = p−1 (co ({x0} ∪ q(D0))) ⊆ p−1 (co ({x0} ∪ q(D))) ⊆ D,

so as a result D1 ⊆ D0. Also since D1 ⊆ D0 we have q(D1) ⊆ q(D0) so

p−1 (co ({x0} ∪ q(D1))) ⊆ p−1 (co ({x0} ∪ q(D0))) = D1,

and as a result D1 ∈ F , so D0 ⊆ D1. Consequently

D0 = p−1 (co ({x0} ∪ q(D0))) . (2.3)

We now claim
co (q(D0)) is compact. (2.4)

Suppose the claim is false. Then there exists a sequence y1, y2, .... in co ({x0}∪q(D0))
without a convergent subsequence. Let A0 = {y1, y2, ....}. Each yn is the limit of
a sequence of finite convex combination of points from {x0} ∪ q(D0) so there exists
a countable set Q0 ⊆ {x0} ∪ q(D0) with yn ∈ co (Q0) for each n. In particular
there exists a countable set C1 ⊆ D0 with yn ∈ co ({x0} ∪ q(C1)) for each n; note
A0 ⊆ co ({x0} ∪ q(C1)).

Next we construct a countable set C2 ⊆ D0 with C1 ⊆ C2, p(C1) ⊆ co ({x0} ∪
q(C2)) and co ({x0} ∪ q(C1)) ⊆ p(C2). To see this first note

C1 ⊆ D0 = p−1 (co ({x0} ∪ q(D0)))

so p(C1) ⊆ co ({x0} ∪ q(D0)). Now p(C1) is countable (since p is single valued
and C1 is countable). Note each x ∈ p(C1) is the limit of a sequence of finite
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convex combination of points from {x0} ∪ q(D0). Then there exists a countable set
Q1 ⊆ {x0} ∪ q(D0) with p(C1) ⊆ co (Q1). In particular there exists a countable set
A2 ⊆ D0 with

p(C1) ⊆ co ({x0} ∪ q(A2)). (2.5)

Next note since C1 ⊆ D0 that p−1 (co ({x0} ∪ q(C1))) ⊆ p−1 (co ({x0} ∪ q(D0))) =
D0 (see (2.3)) so

{w ∈ Γ : p(w) ∈ co ({x0} ∪ q(C1))} ⊆ D0.

Now since p is surjective then

co ({x0} ∪ q(C1)) = co ({x0} ∪ q(C1)) ∩ p(Γ) ⊆ p(D0);

to see this note if x ∈ co ({x0} ∪ q(C1)) ∩ p(Γ) then there exists y ∈ Γ with x ∈
co ({x0} ∪ q(C1)) and x = p(y), and note p(y) (= x) ∈ co ({x0} ∪ q(C1)) so from the
above y ∈ D0 i.e. x = p(y), y ∈ D0 i.e. x ∈ p(D0). Thus co ({x0} ∪ q(C1)) ⊆ p(D0).
Next note co ({x0} ∪ q(C1)) is separable (recall the convex hull of a countable set is
separable) so there exists a countable set Q0 ⊆ X with Q0 ⊆ co ({x0}∪ q(C1)) ⊆ Q0

and since co ({x0} ∪ q(C1)) ⊆ p(D0) we have Q0 ⊆ p(D0). Thus there exists a
countable set B2 ⊆ D0 with Q0 ⊆ p(B2) and as a result

co ({x0} ∪ q(C1)) = Q0 ⊆ p(B2). (2.6)

Let C2 = C1 ∪ A2 ∪ B2. Note C1 ⊆ C2, C2 ⊆ D0 (since A2 ⊆ D0, C1 ⊆ D0 and
B2 ⊆ D0) and since A2 ⊆ C2 and B2 ⊆ C2 we have from (2.5) and (2.6) that

p(C1) ⊆ co ({x0} ∪ q(C1)) and co ({x0} ∪ q(C1)) ⊆ p(C2).

Proceed (as above) and we obtain countable sets C3, C4, .... with Cn ⊆ D0 for
n ∈ {1, 2, ...}, Cn ⊆ Cn+1 for n ∈ {1, 2, ...},

p(Cn) ⊆ co ({x0} ∪ q(Cn+1)) for n ∈ {1, 2...}

and
co ({x0} ∪ q(Cn)) ⊆ p(Cn+1) for n ∈ {1, 2...}.

Let C = ∪∞n=1Cn. For each x ∈ p(C) = p(∪∞n=1Cn) we have x ∈ p(Cn) for some
n ∈ {1, 2, ...} so

x ∈ co ({x0} ∪ q(Cn+1)) ⊆ co ({x0} ∪ q(C)).

Thus
p(C) ⊆ co ({x0} ∪ q(C)). (2.7)
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Also since C1 ⊆ C2 ⊆ ..... (so q(C1) ⊆ q(C2) ⊆ ...) we have

co ({x0} ∪ q(C)) = co ({x0} ∪ q (∪∞n=1Cn)) = co ({x0} ∪ [∪∞n=1 q(Cn)])

⊆ ∪∞n=1 co ({x0} ∪ q(Cn)) ⊆ ∪∞n=1 p(Cn+1) ⊆ p(C)

since p(Cn) ⊆ p(C) for n ∈ {1, 2, ...}. Thus

co ({x0} ∪ q(C)) ⊆ p(C)

and this together with (2.7) yields

p(C) = co ({x0} ∪ q(C)).

Now (2.1) guarantees that co ({x0} ∪ q(C)) is compact. This is a contradiction
since co ({x0} ∪ q(C)) contains the sequence {yn} (note A0 ⊆ co ({x0} ∪ q(C1)) ⊆
co ({x0} ∪ q(C))) which has no convergent subsequence.

Thus (2.4) holds i.e co(q(D0)) is compact. For convenience let K = co (q(D0)).

Note from (2.3) that p−1(K) ⊆ D0 so q (p−1(K)) ⊆ q(D0) ⊆ K. Also note K
p0⇐

p−1(K)
q0→ K where p0 and q0 denote contractions of the appropriate maps p and

q (see [1 pp 214]). Thus φ ∈ Ad(K,K). Now (2.2) guarantees that φ has a fixed
point.
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