S-asymptotically ω -periodic mild solutions to some fractional integro-differential equations with infinite delay

Enock R. Oueama-Guengai and Gaston M. N'Guérékata

Abstract: Under appropriate conditions and using the Krasnosel'skii's fixed point theorem, we prove that the semilinear fractional integro-differential equation in a Banach space X $u'(t) = \frac{1}{\Gamma(\alpha-1)} \int_0^t (t-s)^{\alpha-2} Au(s) ds + F(t, u_t), \quad t \geq 0$, and $u_0 = \phi$, possesses S-asymptotically ω -periodic mild solutions where $1 < \alpha < 2, \phi \in \mathcal{B}$ an abstract space, $A: D(A) \subset X \to X$ a closed (not necessarily bounded) linear operator and $F: \mathbb{R}^+ \times \mathcal{B} \to X$ a continuous function, $u_t: (-\infty, 0] \to X$ with $u_t(\theta) = u(t + \theta)$ is an associated history function to the function $u: \mathbb{R} \to X$.

Keywords: S-asymptotically ω -periodic functions; fractional integrodifferential equations; mild solutions

MSC2010: 34K13, 34G20

Dedicated to Professor Constantin Corduneanu on the occasion of his 90th birthday

1 Introduction

This paper is devoted to the study of the existence of S-asymptotically ω -periodic mild solutions of the following semilinear fractional integro-differential equation in a Banach space X

$$u'(t) = \frac{1}{\Gamma(\alpha - 1)} \int_0^t (t - s)^{\alpha - 2} Au(s) ds + F(t, u_t), \quad t \ge 0, \quad u_0 = \phi$$
 (1.1)

where $1 < \alpha < 2$, $\phi \in \mathcal{B}$ an abstract space to be defined later, $A : D(A) \subset X \to X$ a closed (not necessarily bounded) linear operator and $F : \mathbb{R}^+ \times X \to X$ a continuous function.

For any function $u: \mathbb{R} \to X$, we define the associated history function $t \to u_t$ for $t \ge 0$ as $u_t: (-\infty, 0] \to X$ with $u_t(\theta) = u(t + \theta)$.

The concept of S-asymptotically ω -periodic functions is relatively new. It was introduced in the literature by Henriquez et al. ([5, 6]) and turns out to include the class of asymptotically periodic functions in the sense of M. Fréchet. Qualitative properties of such functions were discussed in [14]. Several papers dealing with the existence of S-asymptotically ω -periodic solutions to fractional differential equations and evolution equations with or without delay have been published recently (cf. for instance [1, 3, 5, 8, 13, 14, 16]).

The paper is organized as follows. In Section 1, we introduce the problem and recall some preliminary facts in Section 2. Section 3 is devoted to information about S-asymptotically ω -periodic functions. The main result is Theorem 4.4 which we present in Section 4.

2 Preliminaries

In this paper $(X, \|\cdot\|)$ will denote a complex Banach space, L(X) the space of all bounded linear operators $X \to X$, $BC((-\infty, 0], X)$, (resp. $BUC((-\infty, 0], X))$ the space of all bounded continuous (resp. bounded uniformly continuous) functions $(-\infty, 0] \to X$, and $C_0(I, X)$ the space of all continuous functions $h: I \to X$ such that $\lim_{t\to\infty} \|h(t)\| = 0$ where $I = \mathbb{R}^+$, or \mathbb{R} .

Definition 2.1. A closed linear operator $A:D(A)\subset X\to X$ with a dense domain D(A) is called a sectorial operator of type $\overline{\omega}$ and angle θ if there exists constants M>0, $\overline{\omega}$ and an angle $\theta\in]0,\frac{\pi}{2}[$ such that its resolvent is outside the sector

$$\overline{\omega} + \sum_{\theta} := \{\lambda + \overline{\omega} : \lambda \in \mathbb{C}, \ |arg(-\lambda)| < \theta\}$$

and

$$\|(\lambda - A)^{-1}\| \le \frac{M}{|\lambda - \overline{\omega}|} \ \lambda \notin \overline{\omega} + \sum_{\theta}$$

Definition 2.2. ([10]) Let $\alpha > 0$ and A be a closed linear operator densely defined in X with resolvent $\rho(A)$. A will be called the generator of a solution operator if there exists $\overline{\omega} \in \mathbb{R}$ and a strongly continuous function $E_{\alpha} : \mathbb{R}^+ \to L(X)$ such that $\{\lambda^{\alpha} : Re\lambda > \overline{\omega}\} \subset \rho(A)$ and

$$\lambda^{\alpha-1}(\lambda^{\alpha} - A)^{-1} = \int_0^\infty e^{-\lambda t} E_{\alpha}(t) x dt, \quad Re\lambda > \overline{\omega}, \quad x \in X.$$

In this case E_{α} is called a solution operator generated by A and $E_{\alpha}(0) = I$.

Let's assume that A is a sectorial operator with $0 \le \theta \le \pi(1 - \frac{\alpha}{2})$, then A is the generator of a solution operator given by

$$E_{\alpha}(t) = \int_{\Gamma} e^{\lambda t} \lambda^{\alpha - 1} (\lambda^{\alpha} - A)^{-1} dt, \quad t \ge 0$$

with Γ a suitable path lying outside the sectorial $\overline{\omega} + \sum_{\theta}$.

Lemma 2.3. Let $1 < \alpha < 2$ and $A : D(A) \subset X \to X$ be a sectorial operator with M > 0, $\overline{\omega} < 0$ and $0 \le \theta \le \pi(1 - \frac{\alpha}{2})$.

Then there exists a constant $C_{(\theta,\alpha)} > 0$ depending on θ and α , such that

$$||E_{\alpha}(t)|| \le \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|t^{\alpha}}, \quad t \ge 0.$$
 (2.1)

From the above, it is easy to verify that E_{α} is integrable. In the border cases $\alpha = 1, 2$, the family $E_{\alpha}(t)$ corresponds respectively to a C_0 -semigroup and a cosine family.

In what follows, $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$ will denote a linear seminormed space of functions $(-\infty, 0] \to \mathbb{X}$ satisfying the fundamental axioms of Kato and Hale below:

 $(\mathbf{A_0})$ If the function $x:]-\infty,T]\to \mathbb{X}$ is continuous on I=[0,T] and $x_0\in \mathcal{B}$, then for every $t\in I$, the following conditions hold:

- (1) $x_t \in \mathcal{B}$
- (ii) $||x(t)|| \le H||x_t||_{\mathcal{B}}$
- (iii) $||x_t||_{\mathcal{B}} \le C_1(t) \sup_{0 \le s \le t} ||x(s)|| + C_2(t) ||x_0||_{\mathcal{B}}$

where H is a constant $H \geq 0$, $C_1 : [0, \infty) \to [0, \infty)$ is a continuous function and $C_2 : [0, \infty) \to [0, \infty)$ is a locally bounded function, H, C_1, C_2 are independent of $x(\cdot)$

 $(\mathbf{A_1})$ For the function x_0 in $(\mathbf{A_0})$, x_t is a \mathcal{B} -valued continuous function on I.

 $(\mathbf{A_2})$ The space \mathcal{B} is complete.

Let's recall some examples of phase spaces.

Example 2.4. $BUC((-\infty, 0], X)$ the Banach space of all bounded and uniformly continuous functions $\nu: (-\infty, 0] \to X$ equipped with the supnorm is a phase space.

Example 2.5. $C_0((-\infty,0],X)$ the Banach space of all bounded and continuous functions $\nu:(-\infty,0]\to X$ such that $\nu(s)\to 0$ as $s\to -\infty$ equipped with the norm $|\nu|:=\sup_{s\leq 0}\|\nu(s)\|$ is also a phase space.

3 S-asymptotically ω -periodic functions

Definition 3.1. (M. Fréchet) A function $f \in BC(\mathbb{R}^+; \mathbb{X})$ is said to be asymptotically ω -periodic for some $\omega > 0$ if there exists $g \in P_{\omega}(\mathbb{R}; \mathbb{X})$ and $h \in C_0(\mathbb{R}^+; \mathbb{X})$ such that

$$f(t) = g(t) + h(t), \ t \in \mathbb{R}^+.$$

The space of all asymptotically ω -periodic $f: \mathbb{R}^+ \to \mathbb{X}$ will be denoted $AP_{\omega}(\mathbb{X})$.

Definition 3.2. ([5]) A function $f \in BC(\mathbb{R}^+; \mathbb{X})$ is said to be S-asymptotically ω -periodic for some $\omega > 0$ if

$$\lim_{t \to \infty} (f(t+\omega) - f(t)) = 0.$$

In this case, ω will be called an asymptotic period of f. It is clear that if ω is an asymptotic period for f, then every $k\omega$, k=n=1,2,... is also an asymptotic period for f.

We denote by $SAP_{\omega}(\mathbb{X})$ the space of such functions. It is known that $SAP_{\omega}(\mathbb{X})$ is a Banach space under the supnorm and that the inclusion $AP_{\omega}(\mathbb{X}) \subset SAP_{\omega}(\mathbb{X})$ is strict.

Example 3.3. ([5]). Let c_0 be space of all sequences $x = (x_n)_n$ where $x_n \in \mathbb{R}$ and $\lim_{n\to\infty} x_n = 0$ equipped with the norm $||x|| = \sup_{n\in\mathbb{N}} |x_n|$, and define $f: \mathbb{R}^+ \to \mathbb{X}$ by

$$f(t) = \left(\frac{2nt}{t^2 + n^2}\right)_n.$$

Then for every $\mu > 0$, f is S-asymptotically ω -periodic, but not asymptotically ω -periodic.

Note that other examples of S-asymptotically ω -periodic functions are given in our previous work [14].

Proposition 3.4. Let $f \in SAP_{\omega}(\mathbb{X})$. Then we have

- (i) $f_a(t) := f(t+a)$ is in $SAP_{\omega}(\mathbb{X})$ for any a > 0.
- (ii) $h(t) := \frac{1}{f(t)}$ is $SAP_{\omega}(\mathbb{X})$ if $\inf_{t \in \mathbb{R}^+} ||f(t)|| > 0$.

(iii), If $f \in SAP_{\omega}(\mathbb{X})$ and $A : \mathbb{X} \to \mathbb{X}$ is a bounded linear operator, then $Af(t) \in SAP_{\omega}(\mathbb{X})$.

Proof. (i) and (ii) are proved in ([14]).

(iii) is straightforward.

 $SAP_{\omega}(\mathbb{X})$ turns out to be a Banach space when equipped with the norm $\|\cdot\|_{\infty}$.

Lemma 3.5. ([14]) Let f be S-asymptotically ω -periodic $f: \mathbb{R}^+ \to \mathbb{X}$ then there exists T > 0 such that $||f(t+\omega) - f(t)|| < \frac{\epsilon}{a}$, for all t > T. Then the function $F_a(t)$ defined by

$$F_a(t) := \int_t^{t+a} f(s)ds \tag{3.1}$$

belongs to $SAP_{\omega}(\mathbb{X})$ for a > 0 fixed.

Theorem 3.6. ([1]) Let \mathbb{X}, \mathbb{Y} be two Banach spaces and $\phi : \mathbb{X} \to \mathbb{Y}$ a function which is uniformly continuous on bounded sets of \mathbb{X} and such that ϕ maps bounded sets of \mathbb{X} into bounded sets of \mathbb{Y} . Then for all $f \in SAP_{\omega}(\mathbb{X})$, the composition $\phi \circ f := [t \to \phi(f(t))]$ is in $SAP_{\omega}(\mathbb{Y})$

Corollary 3.7. Let the map $\phi : \mathbb{X} \to \mathbb{Y}$ be such that there exists L > 0 such that $\|\phi(u) - \phi(v)\| < L\|u - v\|$ for any u, v in a bounded set of \mathbb{X} , then if $f \in SAP_{\omega}(\mathbb{X})$, the composition $\phi \circ f := [t \to \phi(f(t))]$ is in $SAP_{\omega}(\mathbb{Y})$.

Proof. Uniform continuity of ϕ is obvious. Now let K be a bounded set in \mathbb{X} and $u \in K$. Then we have

$$\|\phi(u)\| = \|\phi(u) - \phi(0) + \phi(0)\| \le L\|u\| + \|\phi(0)\| < \infty.$$

Which means $\phi(K)$ is bounded.

The result follows from the theorem above.

Definition 3.8. ([5]) A continuous function $f:[0,\infty)\times\mathbb{X}\to\mathbb{X}$ is said to be uniformly S-asymptotically ω -periodic on bounded sets if for every bounded set $K\subset\mathbb{X}$, the set $\{f(t,x):t\in[0,\infty),x\in K\}$ is bounded and

$$\lim_{t \to \infty} (f(t + \omega, x) - f(t, x)) = 0$$

uniformly in $x \in K$.

Definition 3.9. A continuous function $f:[0,\infty)\times\mathbb{X}\to\mathbb{X}$ is said to be asymptotically uniformly continuous on bounded sets if for every $\epsilon>0$ and every bounded set $K\subset\mathbb{X}$, there exists $L_{\epsilon,K}>0$ and $\delta_{\epsilon,K}>0$ such that

$$||f(t,x) - f(t,y)|| < \epsilon, \quad \forall x, y \in K, ||x - y|| < \delta_{\epsilon,K}.$$

Theorem 3.10. ([5]) Let $f:[0,\infty)\times\mathbb{X}\to\mathbb{X}$ be a function which is uniformly S-asymptotically ω -periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Let $u:[0,\infty)\to\mathbb{X}$ be S-asymptotically ω -periodic. The Nemytskii operator

$$\phi(\cdot):=f(\cdot,u(\cdot))$$

is S-asymptotically ω -periodic.

Corollary 3.11. Let $f:[0,\infty)\times\mathbb{X}\to\mathbb{X}$ be a function with the property that there exists L>0 such that

$$||f(t,x) - f(t,y)|| \le L||x - y||, \ \forall t \ge 0, \ \forall x, y \in K$$

for any bounded set $K \subset \mathbb{X}$. Suppose also that f is uniformly S-asymptotically ω -periodic on bounded sets and $u:[0,\infty)\to\mathbb{X}$ is a S-asymptotically ω -periodic function. Then

$$\phi(\cdot) := f(\cdot, u(\cdot))$$

is S-asymptotically ω -periodic.

Proof. Consider $K = \overline{R(u)}$, where R(u) is the range of u. Since R(u) of $u(\cdot)$ is a bounded set, it follows that ϕ is a bounded function. Moreover, by assumption, there exists L such that

$$\forall t > L \ \|f(t+\omega, u(t+\omega)) - f(t, u(t+\omega))\| \le \frac{\epsilon}{2}$$

and from Theorem 3.10,

 $\forall \epsilon > 0, \ \exists \delta_{\epsilon,K} > 0, \ L_{\epsilon,K} > 0 \text{ such that } \forall t > L_{\epsilon,K}, \ \|f(t,u(t+\omega)) - f(t,u(t))\| \leq \frac{\epsilon}{2}$ and $\|u(t+\omega) - u(t)\| < \delta$.

Therefore
$$\forall t > max \{L_{\epsilon,K}, L\}$$

 $||f(t+\omega, u(t+\omega)) - f(t, u(t))|| \le ||f(t+\omega, u(t+\omega)) - f(t, u(t+\omega))|| +$
 $||f(t, u(t+\omega)) - f(t, u(t))||$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

The proof is now completes.

4 fractional integro-differential equation

From now on, we denote by \mathcal{M} , the following space of admissible functions:

$$\mathcal{M} := \{ f \in BC(\mathbb{R}, X) : f|_{\mathbb{R}^+} \in SAP_{\omega}(X) \}.$$

This is a Banach space under the sup norm

$$||f||_{\mathcal{M}} := \sup_{t \in \mathbb{R}} ||f(t)||.$$

Let's consider the semilinear fractional integro-differential equation (SFIDE)

$$\begin{cases} u'(t) = \frac{1}{\Gamma(\alpha-1)} \int_0^t (t-s)^{\alpha-2} Au(s) ds + F(t, u_t), & t \ge 0, \\ u_0 = \phi & \end{cases}$$

where $1 < \alpha < 2$, $\phi \in \mathcal{B}$ a phase space, $A : D(A) \subset \mathbb{X} \to \mathbb{X}$ a sectorial operator which is the generator of a solution operator $E_{\alpha}(t)$, and $F : [0, \infty) \times \mathcal{B} \to \mathbb{X}$ a continuous function.

Definition 4.1. ([11]) A bounded continuous function $u : \mathbb{R} \to \mathbb{X}$ is said to be a mild solution to (SFIDE) if it satisfies the following

$$\begin{cases} u(t) = E_{\alpha}(t)\phi(0) + \int_0^t E_{\alpha}(t-s)F(s,u_s)ds, & t > 0, \\ u(t) = \phi(t), & t \le 0 \end{cases}$$

Lemma 4.2. ([14]) Let $f \in SAP_{\omega}(\mathbb{X})$. Then the function defined by

$$G(t) = \int_0^t E_{\alpha}(t-s)f(s)ds$$

is also in $SAP_{\omega}(\mathbb{X})$.

Theorem 4.3. Consider equation (SFIDE) and suppose

(H1) The function $F:[0,\infty)\times\mathcal{B}\to\mathbb{X}$ is a continuous function and there exists L>0 such that

$$||F(t,u) - F(t,v)|| \le L||u - v||_{\mathcal{B}}, \ \forall t \ge 0, \ \forall u, v \in K$$

for any bounded set $K \subset \mathcal{B}$.

(H2) F is uniformly S-asymptotically ω -periodic on bounded sets

 $(H3) C^* := \sup_{t>0} C_1(t) < \infty.$

Then equation (SFIDE) has a unique solution in \mathcal{M} provided $L < \frac{\alpha sin(\frac{\pi}{2})}{C^*MC_{(\theta,\alpha)}|\overline{\omega}|^{-\frac{1}{2}}\pi}$

Proof. Let $u \in \mathcal{M}$; then it is easy to see that $u_s \in \mathcal{M}$. Then by (H2) $F(s, u_s) \in SAP_{\omega}(\mathbb{X})$. So in view of the lemma above,

$$\int_0^t E_{\alpha}(t-s)F(s,u_s)ds \in SAP_{\omega}(\mathbb{X}).$$

Consequently $E_{\alpha}(t)\phi(0) + \int_{0}^{t} E_{\alpha}(t-s)F(s,u_{s})ds \in SAP_{\omega}(\mathbb{X})$. Which means that the operator $\Omega: \mathcal{M} \to \mathcal{M}$ such that

$$(\Omega u)(t) := E_{\alpha}(t)\phi(0) + \int_0^t E_{\alpha}(t-s)F(s,u_s)ds$$

is well-defined.

Now let $u, v \in \mathcal{M}$ be solutions to (SFIDE). Then we have

$$\|(\Omega u)(t) - (\Omega v)(t)\| = \|\int_0^t E_\alpha(t-s)[F(s,u_s) - F(s,v_s)]ds\|$$

$$\leq L \int_0^t \|E_\alpha(t-s)\| \|u_s - v_s\|_{\mathcal{B}} ds$$

$$\leq L \int_0^t \|E_\alpha(t-s)\| C_1(s) \sup_{0 \leq \sigma \leq s} \|u(\sigma) - v(\sigma)\| ds$$

$$\leq L \|u - v\|_\infty \int_0^t C_1(s) \|E_\alpha(t-s)\| ds$$

$$\leq L C^* \|u - v\|_\infty \int_0^t \frac{C_{(\theta,\alpha)} M}{1 + |\overline{\omega}|(t-s)^\alpha} ds$$

$$\leq L C^* \|u - v\|_\infty \int_0^t \frac{C_{(\theta,\alpha)} M}{1 + |\overline{\omega}|(s)^\alpha} ds$$

$$= L C^* C_{(\theta,\alpha)} M \frac{|\overline{\omega}|^{\frac{-1}{\pi}}}{\alpha sin(\frac{\pi}{\alpha})} \|u - v\|_\infty$$

Therefore

$$\|(\Omega u) - (\Omega v)\|_{\infty} \le LC^{\star}C_{(\theta,\alpha)}M \frac{|\overline{\omega}|^{\frac{-1}{\pi}}}{\alpha sin(\frac{\pi}{\alpha})} \|u - v\|_{\infty}$$

Now we use the Banach's fixed point principle to complete the proof.

Now we will use the Krasnosel'skii fixed point theorem to prove our second result.

Theorem 4.4. (Krasnosel'skii) Let M be a closed convex and non-empty subset of a Banach space and P,Q are two operators such that

- (i) $Pu + Qv \in M$, whenever $u, v \in M$
- (ii) P is compact and continuous
- (iii) Q is a contraction mapping

Then there exists $z \in M$ such that z = Pz + Qz

Now we make the following assumptions

- (T1) $F : [0, \infty) \times \mathcal{B} \to \mathbb{X}$ is a function which is uniformly S-asymptotically ω -periodic and asymptotically uniformly continuous on bounded sets.
- (T2) There exists $C_F > 0$ such that

$$||F(t,x)|| < C_F(1+||x||_{\mathcal{B}}), \text{ for all } t \ge 0, x \in \mathcal{B}.$$

(T3) There exists $L_g > 0$ such that for all $u, v \in BC([0, \infty), \mathbb{X}) \to \mathbb{X}$, $\|g(u) - g(v)\| < L_g \|u - v\|_{\infty}$

We assume $C_{(\theta,\alpha)}ML_g < 1$.

Now we state and prove our second result.

Theorem 4.5. Assume (T1)-(T2)-(T3). Then Eq(1) has at least one mild solution $u(t) \in \mathcal{M}$ if we assume that $E_{\alpha}(t)$ is compact for any t > 0.

Proof. Note that (T3) implies that there exists a constant $C_g > 0$ such that $||g(u)|| \le C_g(1 + ||u||)$, for any $u \in BC([0, \infty), \mathbb{X})$.

We consider the same operator Ω as in the proof of Theorem 4.3 and use several steps to achieve our conclusion.

Step 1: Let B_{γ} be defined by

$$B_{\gamma} := \{ u \in \mathcal{M} : ||u||_{\infty} \leq \gamma \}, \text{ where } \gamma > \max \left\{ \frac{C_F}{1 - (MC_{(\theta,\alpha)} + C_F)}, 0 \right\}$$

Now define the operators

$$P,Q:\mathcal{M}\to\mathcal{M}$$

by

$$(Pv)(t) := E_{\alpha}(t)v_0 = E_{\alpha}(t)\phi(0)$$

and

$$(Qu)(t) := \int_0^t E_{\alpha}(t-s)F(s,u_s)ds$$

Using (T2) we get

$$||(Pv)(t) + (Qu)(t)|| \le ||E_{\alpha}(t)|| ||\phi(0)|| + \int_{0}^{t} ||E_{\alpha}(t-s)F(s,u_{s})|| ds$$

$$\le \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|t^{\alpha}} \left\{ ||\phi(0)|| + \int_{0}^{t} ||F(s,u_{s})|| ds \right\}$$

$$\leq \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|t^{\alpha}} \{ \|\phi(0)\| + C_F(1+\|u\|)t \}$$

$$\leq \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|t^{\alpha}}\left\{\gamma+C_F(1+\gamma)t\right\}$$

$$\leq C_{(\theta,\alpha)}M\left\{\gamma + C_F(1+\gamma)\right\}$$

$$\leq \gamma$$

We conclude that for all $u,v\in B_{\gamma},\, Pu+Qv\in B_{\gamma}.$ Step 2 : Show that the operator P is contractive. Indeed , let $u,v\in SAP_{\omega}(\mathbb{X})$

Then we have

$$||(Pu)(t) + (Pv)(t)|| \le ||E_{\alpha}(t)|| ||g(u) - g(v)||$$

$$\leq \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|t^{\alpha}}L_g||u-v||_{\infty}$$

Thus we obtain

$$||Pu - Pv||_{\infty} \le \frac{C_{(\theta,\alpha)}M}{1 + |\overline{\omega}|t^{\alpha}} L_g ||u - v||_{\infty}$$

$$\leq C_{(\theta,\alpha)} M L_g ||u - v||_{\infty}$$

We conclude in using the assumption $C_{(\theta,\alpha)}ML_g < 1$. Finally P is contractive. Step 3: Show that the operator Q is continuous on B_{γ} .

Let $(u_n) \subset B_{\gamma}$ such that $u_n \to u$ in B_{γ} . Then in view of Definition 3.9 $F(s, u_n(s)) \to F(s, u(s))$ as $n \to \infty$ for all $s \in [0, \infty)$.

Now we have

$$||(Qu_n)(t) - (Qu)(t)|| = ||\int_0^t E_\alpha(t-s)[F(s, u_n(s)) - F(s, u(s))]ds||$$

$$\leq \int_0^t \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|(t-s)^{\alpha}} ||F(s,u_n(s)) - F(s,u(s))|| ds$$

$$\leq \int_0^t \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|(t-s)^{\alpha}} C_F(2+||u_n(s)||+||u(s)||) ds$$

$$\leq 2C_F(1+\gamma) \int_0^t \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|(t-s)^{\alpha}} ds$$

$$= 2C_F(1+\gamma)C_{(\theta,\alpha)}M \frac{|\overline{\omega}|^{\frac{-1}{\pi}}}{\alpha sin(\frac{\pi}{\alpha})} < \infty$$

Therefore $Qu_n \to Qu$ as $n \to \infty$ by the Lebesgues's Dominated convergence theorem.

Step 4: The set (Qu_n) where $(Qu_n) \subset B_{\gamma}$ is uniformly bounded. Indeed for all n, we have

$$\begin{aligned} \|(Qu_n)(t)\| &= \|\int_0^t E_\alpha(t-s)F(s,u_n(s))ds\| \\ &\leq \int_0^t \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|(t-s)^\alpha} \|F(s,u_n(s))\|ds \\ &\leq \int_0^t \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|(t-s)^\alpha} C_F(1+\|u_n(s)\|)ds \\ &\leq C_F(1+\gamma) \int_0^t \frac{C_{(\theta,\alpha)}M}{1+|\overline{\omega}|(t-s)^\alpha} ds \\ &= C_F(1+\gamma)C_{(\theta,\alpha)}M \frac{|\overline{\omega}|^{\frac{-1}{\pi}}}{\alpha sin(\frac{\pi}{\alpha})} \end{aligned}$$

This shows that (Qu_n) is uniformly bounded.

Step 5: Q is compact.

First, let's show that the set $\{(Qu)(t): u(t) \in B_{\gamma}\}$ is relatively compact in X for each t > 0.

$$\left\{ (Q_{\varepsilon_0}u)(t) := \int_0^{t-\varepsilon_0} E_{\alpha}(t-\varepsilon_0-s)F(s,u(s))ds \right\}$$
 is uniformly bounded for $u \in B_{\gamma}$.

To this end, fixed t > 0 and ε_0 such that $0 < \varepsilon_0 < t$. We have $\left\{ (Q_{\varepsilon_0} u)(t) := \int_0^{t-\varepsilon_0} E_{\alpha}(t-\varepsilon_0-s)F(s,u(s))ds \right\}$ is uniformly bounded for $u \in B_{\gamma}$. This with the assumption that $E_{\alpha}(\varepsilon_0)$ is compact yield the set $\{E_{\alpha}(\varepsilon_0)(Q_{\varepsilon_0} u)(t) : u \in B_{\gamma}\}$ is relatively compact.

Since from Definition 2.2, $E_{\alpha}(0) = I$ and $E_{\alpha}(t)x$ is continuous for any $x \in \mathbb{X}$, we obtain

$$E_{\alpha}(\varepsilon_{0})(Q_{\varepsilon_{0}}u)(t) = E_{\alpha}(\varepsilon_{0}) \int_{0}^{t-\varepsilon_{0}} E_{\alpha}(t-\varepsilon_{0}-s)F(s,u(s))ds$$

which shows that

$$\lim_{\varepsilon_0 \to 0} E_{\alpha}(\varepsilon_0)(Q_{\varepsilon_0}u)(t) = (Qu)(t)$$

We conclude that $\{(Qu)(t): u(t) \in B_{\gamma}\}$ is relatively compact in X.

Finally, Q is compact as claimed.

From all of the above, we conclude that Eq(1) has at least one mild solution $u(t) \in$ \mathcal{M} , using the Krasnosel'ski's fixed point theorem.

Remark 4.6. These results are new even in the context of asymptotically ω -periodic functions.

References

- [1] J. Blot, P. Cieutat, G.M. N'Guérékata, S-asymptoticallyω-periodic functions and applications to evolution equations, African Diaspora J. Math. 12 (2) (2011), 113-121.
- [2] A. Caicedo, C. Cuevas, G.M. Mophou, G.M. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Institute 349 (2012), 1.24.

- [3] W. Dimbour, G. Mophou, G.M. N'Guérékata, S-asymptotically periodic solutions for partial differential equations with finite delay, Electr. J. Diff. Equ., Vol.2011(2011), No.117, 1-12.
- [4] R. Gorenflo, F. Mainardi, On Mittag-Leffler-type functions in fractional evolution provesses, J. Comput. Appl. Math. 118 (2000) 283-299.
- [5] H.R. Henriquez, M. Pierri, P. Tábos, On S-asymptotically ω -periodic functions on Banach spaces and applications, J. Math. Anal. Appl. 343 (2008) 1119-1130
- [6] H. R. Henríquez, M.Pierre, P.Táboas Existence of S-asymptotically ω -periodic solutions for abstract neutral equations, Bull. Austr. Math. Soc 78(2008), 365-382.
- [7] N. Heymans, I. Podlubny, *Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives*, Rheol. Acta **45(5)**(2006), 765-771.
- [8] C. Lizama, G.M. N'Guérékata, Bounded mild solutions for semilinear integrodifferential equations in Banach spaces, Oper. Theory 68 (2010), 207-227.
- [9] A. Lunardi, Analytic and optimal regularity in parabolic problems, Birkhauser, Basel, Boston-Berlin, 1995
- [10] A. Méril, G. Mophou, G.M. N'Guérékata, Asymptotic behavior of bounded mild solutions of some functional differential and fractional differential equations, 24(5-6)(2011), 401-416.
- [11] G. Mophou, G.M. N'Guérékata, V. Valmorin, Asymptotic behavior of mild solutions of some fractional functional integro-differential equations, African Disapora J. Math.16 (2013), 70-81.
- [12] Gaston M. N'Guérékata, Spectral theory for bounded functions and applications to evolution equations, Nova Science Publishers, New York 2017.
- [13] S. Nicola, M. Pierri, A note on S-asymptotically ω -periodic functions, Nonlinear Analysis, R.W.A. **10** (2009), 2937-2938.
- [14] E. R. Oueama, G.M. N'Guérékata, On S-asymptotically ω-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces, Math. Meth. Appl. Sci. (2018),1-8, DOI.org/10.1002/mmas5082.
- [15] J. Pruss, Evolutionary Integral Equations and Applications, Monographs Math, vol. 87, Birkhauser-Verlag, 1993.

[16] J.Zhao, H. Ding, G.M. N'Guérékata, S-asymptotically periodic solutions for an epidemic model with superlinear perturbation, Adv. Difference Equ., 2016, paper No. 221, 7 pp.

E. R. Oueama

Département de Mathématiques et Informatique, Faculté des Sciences, Université de Bangui, B.P. 908 Bangui, Central African Republic E-mail: oueama@yahoo.fru

G. M. N'Guerekata

Department of Mathematics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA

E-mail: Gaston.N'Guerekata@morgan.edu