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1 Introduction

In this note we study integro-differential inclusions of the form

x′′(t) ∈ A(t)x(t) +

∫ t

0
K(t, s)F (s, x(s), H(s, x(s)))ds, x(0) = x0, x

′(0) = y0, (1.1)

where X is a real separable Banach space, P(X) is the family of all subsets of
X, I = [0, T ], F (., ., .) : I × X2 → P(X), H(., .) : I × X → P(X), {A(t)}t≥0 is a
family of linear closed operators from X into X that generates an evolution system
of operators {G(t, s)}t,s∈[0,T ], ∆ = {(t, s) ∈ [0, T ]× [0, T ]; t ≥ s}, K(., .) : ∆ → R is
continuous and x0, y0 ∈ X. The general framework of evolution operators {A(t)}t≥0

that define problem (1.1) has been developed by Kozak ([10]) and improved by
Henriquez ([8]).

Existence results and some qualitative properties of the mild solutions of problem

x′′(t) ∈ A(t)x(t) +

∫ t

0
K(t, s)F (s, x(s))ds, x(0) = x0, x

′(0) = y0, (1.2)

may be found in [7]. In [7] the set-valued map F is assumed to be closed-valued
and Lipschitzian in the state variable. Such an assumption is quite natural in order
to obtain good properties of the solution set, but it is interesting to investigate the
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problem when the right-hand side of the multivalued equation may have nonclosed
values.

Following the approach in [12] we consider the problem (1.1), where F and H are
closed-valued multifunctions Lipschitzian with respect to the second variable and F
is contractive in the third variable. Obviously, the values of the set-valued map
(t, x) → F (t, x,H(t, x)) are, in general, neither convex nor closed. Therefore, the
right-hand side of the differential inclusion in (1.1) is also neither convex nor closed.
We prove the arcwise connectedness of the solution set of problem (1.1). The main
tool is a result ([11, 12]) concerning the arcwise connectedness of the fixed point set
of a class of nonconvex nonclosed set-valued contractions.

In several recent papers ([1, 2, 3, 5, 6]) existence results and qualitative properties
of mild solutions have been obtained for the following problem

x′′ ∈ A(t)x+ F (t, x), x(0) = x0, x′(0) = y0,

with A(.) and F (., .) as above. The result in the present paper extends to the
integro-differential framework (1.1) the result in [4] obtained for problem

x′′ ∈ A(t)x+ F (t, x,H(t, x)), x(0) = x0, x′(0) = y0,

with A(.), F (., ., .) and H(., .) as above.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we use in the sequel and in Section 3 we prove our main result.

2 Preliminaries

Let Z be a metric space with the distance dZ and let 2Z be the family of all nonempty
closed subsets of Z. For a ∈ Z and A,B ∈ 2Z set dZ(a,B) = infb∈B dZ(a, b) and
d∗Z(A,B) = supa∈A dZ(a,B). Denote by DZ the Pompeiu-Hausdorff generalized
metric on 2Z defined by

DZ(A,B) = max{d∗Z(A,B), d∗Z(B,A)}, A,B ∈ 2Z .

In what follows, when the product Z = Z1 × Z2 of metric spaces Zi, i = 1, 2, is
considered, it is assumed that Z is equipped with the distance
dZ((z1, z2), (z

′
1, z

′
2)) =

∑2
i=1 dZi(zi, z

′
i).

Let X be a nonempty set and let F : X → 2Z be a set-valued map from X to
Z. The range of F is the set F (X) = ∪x∈XF (x). Let (X,F) be a measurable space.
The multifunction F : X → 2Z is called measurable if F−1(Ω) ∈ F for any open set
Ω ⊂ Z, where F−1(Ω) = {x ∈ X;F (x)∩Ω ̸= ∅}. Let (X, dX) be a metric space. The
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multifunction F is called Hausdorff continuous if for any x0 ∈ X and every ϵ > 0
there exists δ > 0 such that x ∈ X, dX(x, x0) < δ implies DZ(F (x), F (x0)) < ϵ.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X, |.|X) be
a Banach space. We denote by L1(T,X) the Banach space of all (equivalence classes
of) Bochner integrable functions u : T → X endowed with the norm

|u|L1(T,X) =

∫
T
|u(t)|Xdµ

A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈ K and
every A ∈ F , one has

χA.u+ χT\A.v ∈ K

where χB, B ∈ F indicates the characteristic function of B.
A metric space Z is called an absolute retract if, for any metric space X and

any nonempty closed set X0 ⊂ X, every continuous function g : X0 → Z has a
continuous extension g : X → Z over X. It is obvious that every continuous image
of an absolute retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in the
proof of our result.

Let (T,F , µ) be a finite, positive, nonatomic measure space, S a separable Ba-
nach space and let (X, |.|X) be a real Banach space. To simplify the notation we
write E in place of L1(T,X). The proofs of the next two lemmas may be found in
[12].

Lemma 2.1. Assume that ϕ : S ×E → 2E and ψ : S ×E ×E → 2E are Hausdorff
continuous multifunctions with nonempty, closed, decomposable values, satisfying
the following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(ϕ(s, u), ϕ(s, u
′)) ≤ L|u− u′|E .

b) There exists M ∈ [0, 1) such that L +M < 1 and for every s ∈ S and every
(u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u
′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E;u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, ϕ(s, u)), (s, u) ∈
S × E. Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p there exists a continuous

function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S and γ(si) = ui, i =
1, ..., p.
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Lemma 2.2. Let U : T → 2X and V : T ×X → 2X be two nonempty closed-valued
multifunctions satisfying the following conditions

a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) ≤ r(t)
for almost all t ∈ T .

b) The multifunction t→ V (t, x) is measurable for every x ∈ X.
c) The multifunction x→ V (t, x) is Hausdorff continuous for all t ∈ T .
Let v : T → X be a measurable selection from t→ V (t, U(t)).
Then there exists a selection u ∈ L1(T,X) such that v(t) ∈ V (t, u(t)), t ∈ T .

In what follows {A(t)}t≥0 is a family of linear closed operators from X into X
that genearates an evolution system of operators {G(t, s)}t,s∈I . By hypothesis the
domain of A(t), D(A(t)) is dense in X and is independent of t.

Definition 2.3. ([8, 10]) A family of bounded linear operators G(t, s) : X → X,
(t, s) ∈ ∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator of the equation

x′′(t) = A(t)x(t) (2.1)

if
i) For any x ∈ X, the map (t, s) → G(t, s)x is continuously differentiable and

a) G(t, t) = 0, t ∈ I.
b) If t ∈ I, x ∈ X then ∂

∂tG(t, s)x|t=s = x and ∂
∂sG(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sG(t, s)x ∈ D(A(t)), the map (t, s) → G(t, s)x is of class C2

and
a) ∂2

∂t2
G(t, s)x ≡ A(t)G(t, s)x.

b) ∂2

∂s2
G(t, s)x ≡ G(t, s)A(t)x.

c) ∂2

∂s∂tG(t, s)x|t=s = 0.

iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂s
G(t, s)x, ∂3

∂s2∂t
G(t, s)x and

a) ∂3

∂t2∂s
G(t, s)x ≡ A(t) ∂

∂sG(t, s)x and the map (t, s) → A(t) ∂
∂sG(t, s)x is contin-

uous.
b) ∂3

∂s2∂t
G(t, s)x ≡ ∂

∂tG(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [8])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in the space

X = L2(R,C) of 2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)
dτ2
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with domain H2(R,C) the Sobolev space of 2π-periodic functions whose derivatives
belong to L2(R,C). It is well known thatA1 is the infinitesimal generator of strongly
continuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely
the spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors
zn(τ) = 1√

2π
einτ , n ∈ N. The set zn, n ∈ N is an orthonormal basis of X. In

particular, A1z =
∑

n∈Z−n2 < z, zn > zn, z ∈ D(A1). The cosine function is
given by C(t)z =

∑
n∈Z cos(nt) < z, zn > zn with the associated sine function

S(t)z = t < z, z0 > z0 +
∑

n∈Z∗
sin(nt)

n < z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)dτ with domain D(A2(t)) =
H1(R,C). Set A(t) = A1 + A2(t). It has been proved in [8] that this family
generates an evolution operator as in Definition 2.1.

Definition 2.4. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of
problem (1.1) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such
that

f(t) ∈ F (t, x(t), H(t, x(t))) a.e. (I), (2.2)

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
G(t, s)

∫ s

0
K(s, τ)f(τ)dτ, t ∈ I. (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2)
and x(.) is defined by (2.3).

We shall use the following notations for the solution sets of (1.1).

S(x0, y0) = {(x(.), f(.)); (x(.), f(.)) is a trajectory-selection pair of (1.1)}. (2.4)

In what follows we assume the following hypothesis.

Hypothesis 2.5. i) There exists an evolution operator {G(t, s)}t,s∈I associated to
the family {A(t)}t≥0.

ii) There exist M,M0 ≥ 0 such that |G(t, s)|B(X) ≤M , | ∂∂sG(t, s)| ≤M0, for all
(t, s) ∈ ∆.

F : I ×X ×X → P(X) and H : I ×X → P(X) are two set-valued maps with
nonempty closed values, satisfying

iii) The set-valued maps t → F (t, u, v) and t → H(t, u) are measurable for all
u, v ∈ X.

iv) There exist l(.) ∈ L1(I,R) such that, for every u, u′ ∈ X,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (I).

v) There exist m(.) ∈ L1(I,R) and θ ∈ [0, 1) such that, for every u, v, u′, v′ ∈ X,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e. (I).
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vi) There exist f, g ∈ L1(I,R) such that

d(0, F (t, 0, 0)) ≤ f(t), d(0, H(t, 0)) ≤ g(t) a.e. (I).

In what follows N(t) = max{l(t),m(t)}, t ∈ I, N∗(t) =
∫ t
0 N(s)ds.

Given α ∈ R we denote by L1 the Banach space of all (equivalence classes of)
Lebesgue measurable functions σ : I → X endowed with the norm

|σ|1 =
∫ T

0
e−αN∗(t)|σ(t)|dt.

We note that condition (2.3) can be rewritten as

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds ∀t ∈ I, (2.5)

where U(t, s) =
∫ t
s G(t, τ)K(τ, s)dτ .

Denote K0 := sup(t,s)∈∆ |K(t, s)| and remark that |U(t, s)| ≤ MK0(t − s) ≤
MK0T .

3 Main result

Even if the multifunction from the right-hand side of (1.1) has, in general, nonclosed
nonconvex values, its solution set S(x0, y0) defined in (2.4) has some meaningful
properties, stated in theorem below.

Theorem 3.1. Assume that Hypothesis 2.5 is satisfied and let α > 2MK0T
1−θ . Then

1) For every (x0, y0) ∈ X×X, the solution set S(x0, y0) is nonempty and arcwise
connected in the space C(I,X).

2) For any (ξi, µi) ∈ X × X and any xi ∈ S(ξi, µi), i = 1, ..., p, there exists
a continuous function s : X × X → C(I,X) such that s(ξ, µ) ∈ S(ξ, µ) for any
(ξ, µ) ∈ X ×X and s(ξi, µi) = xi, i = 1, ..., p.

3) The set S = ∪(ξ,µ)∈X×XS(ξ, µ) is arcwise connected in C(I,X).

Proof. 1) For (ξ, µ) ∈ X ×X and f ∈ L1, set

xξ,µ(t) = − ∂

∂s
G(t, 0)ξ +G(t, 0)µ+

∫ t

0
U(t, s)f(s)ds (3.1)

and consider λ : X ×X → C(I,X) defined by λ(ξ, µ)(t) = − ∂
∂sG(t, 0)ξ +G(t, 0)µ.

We prove that the multifunctions ϕ : X×X×L1 → 2L
1
and ψ : X×X×L1×L1 →

2L
1
given by

ϕ((ξ, µ), u) = {v ∈ L1; v(t) ∈ H(t, xξ,µ(t)) a.e.(I)},
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ψ((ξ, µ), u, v) = {w ∈ L1; w(t) ∈ F (t, xξ,µ(t), v(t)) a.e.(I)},

(ξ, µ) ∈ X ×X, u, v ∈ L1 satisfy the hypotheses of Lemma 2.1.
Since xξ,µ(.) is measurable and H satisfies Hypothesis 2.5 iii) and iv), the mul-

tifunction t → H(t, xξ,µ(t)) is measurable and nonempty closed-valued, it has a
measurable selection. Therefore due to Hypothesis 2.5 vi), the set ϕ((ξ, µ), u) is
nonempty. The fact that the set ϕ((ξ, µ), u) is closed and decomposable follows by
a simple computation. In the same way we obtain that ψ((ξ, µ), u, v) is a nonempty
closed decomposable set.

Pick ((ξ, µ), u), ((ξ1, µ1), u1) ∈ X ×X ×L1 and choose v ∈ ϕ((ξ, µ), u). For each
ε > 0 there exists v1 ∈ ϕ((ξ1, µ1), u1) such that, for every t ∈ I, one has

|v(t)− v1(t)| ≤ D(H(t, xξ,µ(t)), H(t, xξ1,µ1(t))) + ε ≤
l(t)[M0|ξ − ξ1|+M |µ− µ1|+MK0T

∫ t
0 |u(s)− u1(s)|ds] + ε.

Hence
|v − v1|1 ≤ [M0|ξ − ξ1|+M |µ− µ1|]

∫ T
0 e−αN∗(t)l(t)dt+

MK0T
∫ T
0 e−αN∗(t)l(t)(

∫ t
0 |u(s)− u1(s)|ds)dt+ εT ≤

1
α [M0|ξ − ξ1|+M |µ− µ1|] + MKTT

α |u− u1|1 + εT

for any ε > 0.
This implies

dL1(v, ϕ((ξ1, µ1), u1)) ≤
1

α
[M0|ξ − ξ1|+M |µ− µ1|] +

MK0T

α
|u− u1|1

for all v ∈ ϕ((ξ, µ), u). Therefore,

d∗L1(ϕ((ξ, µ), u), ϕ((ξ1, µ1), u1)) ≤
1

α
[M0|ξ − ξ1|+M |µ− µ1|] +

MK0T

α
|u− u1|1

Consequently,

DL1(ϕ((ξ, µ), u), ϕ((ξ1, µ1), u1)) ≤
1

α
[M0|ξ − ξ1|+M |µ− µ1|] +

MK0T

α
|u− u1|1

which shows that ϕ is Hausdorff continuous and satisfies the assumptions of Lemma
2.1.

Pick ((ξ, µ), u, v), ((ξ1, µ1), u1, v1) ∈ X×X×L1×L1 and choose w ∈ ψ((ξ, µ), u, v).
Then, as before, for each ε > 0 there exists w1 ∈ ψ((ξ1, µ1), u1,
v1) such that for every t ∈ I

|w(t)− w1(t)| ≤ D(F (t, xξ,µ(t), v(t)), F (t, xξ1,µ1(t), v1(t))) + ε ≤ m(t)[M0|ξ
−ξ1|+M |µ− µ1|+MK0T

∫ t
0 |u(s)− u1(s)|ds] + θ|v(t)− v1(t)|+ ε.
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Hence

|w − w1|1 ≤ 1
α [M0|ξ − ξ1|+M |µ− µ1|] + MK0T

α |u− u1|1 + θ|v − v1|1 + εT

≤ 1
α [M0|ξ − ξ1|+M |µ− µ1|] + (MK0T

α + θ)(|u− u1|1 + |v − v1|1) + εT

≤ 1
α [M0|ξ − ξ1|+M |µ− µ1|] + (MK0T

α + θ)dL1×L1((u, v), (u1, v1)) + εT.

As above, we deduce that

DL1(ψ((ξ, µ), u, v), ψ((ξ1, µ1), u1, v1)) ≤
1
α [M0|ξ − ξ1|+M |µ− µ1|] + (MK0T

α + θ)dL1×L1((u, v), (u1, v1)).

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypothesis of
Lemma 2.1.

Define Γ((ξ, µ), u) = ψ((ξ, µ), u, ϕ((ξ, µ), u)), ((ξ, µ), u) ∈ X2 × L1. According
to Lemma 2.1, the set Fix(Γ((ξ, µ), .)) = {u ∈ L1;u ∈ Γ((ξ, µ), u)} is nonempty
and arcwise connected in L1(I,X). Moreover, for fixed (ξi, µi) ∈ X2 and ui ∈
Fix(Γ((ξi, µi), .)), i = 1, ..., p, there exists a continuous function γ : X2 → L1 such
that

γ((ξ, µ)) ∈ Fix(Γ((ξ, µ), .)), ∀(ξ, µ) ∈ X2, (3.2)

γ((ξi, µi)) = ui, i = 1, ..., p. (3.3)

We shall prove that

Fix(Γ((ξ, µ), .)) = {u ∈ L1; u(t) ∈ F (t, xξ,µ(t), H(t, xξ,µ(t))) a.e. (I)}. (3.4)

Denote by A(ξ, µ) the right-hand side of (3.4). If u ∈ Fix(Γ((ξ, µ), .)) then there
is v ∈ ϕ((ξ, µ), v) such that u ∈ ψ((ξ, µ), u, v). Therefore, v(t) ∈ H(t, xξ,µ(t)) and

u(t) ∈ F (t, xξ,µ(t), v(t)) ⊂ F (t, xξ,µ(t), H(t, xξ,µ(t))) a.e. (I),

so that Fix(Γ((ξ, µ), .)) ⊂ A(ξ, µ).
Let now u ∈ A(ξ, µ). By Lemma 2.2, there exists a selection v ∈ L1 of the

multifunction t→ H(t, xξ,µ(t)) satisfying

u(t) ∈ F (t, xξ,µ(t), v(t)) a.e. (I).

Hence, v ∈ ϕ((ξ, µ), v), u ∈ ψ((ξ, µ), u, v) and thus u ∈ Γ((ξ, µ), u), which completes
the proof of (3.4).

We next note that the function T : L1 → C(I,X),

T (u)(t) :=

∫ t

0
U(t, s)u(s)ds
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is continuous and one has

S(ξ, µ) = λ(ξ, µ) + T (Fix(Γ((ξ, µ), .))), (ξ, µ) ∈ X2. (3.5)

Since Fix(Γ((ξ, µ), .)) is nonempty and arcwise connected in L1, the set S(ξ, µ)
has the same properties in C(I,X).

2) Let (ξi, µi) ∈ X2 and let xi ∈ S(ξi, µi), i = 1, ..., p be fixed. By (3.5) there
exists vi ∈ Fix(Γ((ξi, µi), .)) such that

xi = λ(ξi, µi) + T (vi), i = 1, ..., p.

If γ : X2 → L1 is a continuous function satisfying (3.2) and (3.3) we define, for every
(ξ, µ) ∈ X2,

s(ξ, µ) = λ(ξ, µ) + T (γ(ξ, µ)).

Obviously, the function s : X → C(I,X) is continuous, s(ξ, µ) ∈ S(ξ, µ) for all
(ξ, µ) ∈ X2 and

s(ξi, µi) = λ(ξi, µi) + T (γ(ξi, µi)) = λ(ξi, µi) + T (vi) = xi, i = 1, ..., p.

3) Let x1, x2 ∈ S = ∪(ξ,µ)∈X2S(ξ, µ) and choose (ξi, µi) ∈ X2, i = 1, 2 such
that xi ∈ S(ξi, µi), i = 1, 2. From the conclusion of 2) we deduce the existence
of a continuous function s : X2 → C(I,X) satisfying s(ξi, µi) = xi, i = 1, 2 and
s(ξ, µ) ∈ S(ξ, µ), (ξ, µ) ∈ X2. Let h : [0, 1] → X2 be a continuous mapping such
that h(0) = (ξ1, µ1) and h(1) = (ξ2, µ2). Then the function s ◦ h : [0, 1] → C(I,X)
is continuous and verifies

s ◦ h(0) = x1, s ◦ h(1) = x2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1],

which completes the proof.
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