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FREQUENCY DOMAIN CRITERIA FOR NUCLEAR
REACTOR STABILITY

C. Corduneanu*®

In [7], A. Halanay and V. Rasvan investigated recently a
class of integro-differential systems occurring in nuclear reactor
dynamics., Their systems represent special cases of the following
one:

[ x(t) = (Ax)(t) + (bp)(t),
. 4 -1 -1
J p(t) = - | BA T Tp(t) - n (£)] - PATLL + p(£)Iv(t),
: k=1 (1)

nk(t) = Ak[p(t) —,nk(t)], k= 1,2,...,M,

| v(t) = (e*x)(t) + (ap)(t),

where A, b, c¢c* and o stand for certain difference-integral
operators. More precisely, we assume that these operators are
formally given by

hd t
(Ax)(t) = on(t) + ) A.x(t-t,) + J'B(t-s)x(s)ds, (2)
j=1 7 J 0
«© et
(bg)(t) = b &E(t) + Z b.E(t-t.) + | B(t-s)&(s)ds, (3)
0 j=1 3 I o
@ rt
(c*x)(t) = ckx(t) + ) c¥x(t-t,) + | a*(t-s)x(s)ds, (4)
. ® rt
(ap)(t) = a, (t) + Z ajp(tftj) + v(t-s)p(s)ds, (5)
j=1 4 0
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with tj >0, j=1,2,..., and such that the following condi-

tions hold true:

( . ad
YIAN < 4o, | IB(E)dt < +o,
j=0 Jo
oo OO
L Ib. < 4o, [ IB(E)I AL < +o,
j=0 ‘0
1 o (6)
LlcHl < o, | 1d%(t)ldt < 4w,
j=0 o
o« {oo]
Y oL < 4o, [ Iy(t)|dt < +w.
| j=0 0

The constants Bk, Ak’ k=1,2,...,M, and A, P are

assumed to be positive. Their physical meaning has been discussed
in [7]1, as well as in the papers quoted there.

One more remark is necessary before proceeding further in
investigating the system (1). The fact that the delays tj are

the same for each operator A, b, c* or o does not cause any loss
of generality. Indeed, if different sequences of delays are con-
sidered for the above operators, then the union of these sequences
is again countable and, therefore, it can be conveniently denoted

by {tj}. We have to add then some null coefficients Aj’ bj,-c?

and aj in the representation of the operators A, b, c¢* and Oy

such that they take the forms (2)-(5). It is worth to point out
the fact that conditions (6) keep their validity.

Further assumptions will be made on the system (1), which
obviously constitutes an integro-differential system with infinite
delay. The nonlinear part of (1) occurs only in the right hand
side of the second equation and it is of quadratic type.

In order to determine a unique solution of (1), it is neces-
sary to prescribe some initial data. Taking into account the form
of these equations, there results that

x(t) = h(t), p(t) = A(t), t<o0, (7)

and
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e ] - 0
%(06) = %, p(0%) = p, m (04) =,

kK = 1,2,...,M,
constitute the appropriate kind of initial conditions for (1).
- We usually assume that Hh(t)H,]A(t)I € L(R_,R).

Besides (1), we shall consider the linear system with a real
parameter h:

H

[ y(t) = (Ay)(t) + (BE)(t),

J E(t)

1

M
- L BATIE®) - 5 (0] - PATMRECety) (0) + (0B (D), (9)
k=1

\ ck(t) = Ak[g(t) - gk(t)J, k =1,2,...,M,

on which certain assumptions will be made in the sequel,

Associated to (9) is the linear block (i.e., the linear con-
trol system with wu(t) as input),

[ y(t)

(Ay)(t) + (BEX(t),

. |
Et) = - | BATIE(E) - £, ()T PAT L Coty) (6) + (aE)(6)T + u(t),
k=1 (10)

ck(t) = Ak[gCt) - Ck(t)], k= 1,2,...,M,

P(t) = (eHy)(t) + (a&)(t).
\

A unique solution for (89) or (10) is determined if initial
conditions of the form (7), (8) are given:

y(t) = &(t), E&(t) = ¢(t), t <0, (1)

and
0 0
y(0+) =y, &(0+) = s G (04) = Les ko= 1,2,...,M (12)

Let us define now the following matrices:
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AO b0 y 0 0 0
-1 . L -1 -1 -1
-PA "hef  -A (Pha0+§8k) ATB  ATB, A "By
A -A 0 0
Ao 1 1 ,(13)
0 )\2 0 —)\2 . 0
AM 0 0 —AM_
"~ A, b. 0
J ]
—'l oo "l
~-PA hc§ -PA haj 0 s 3 = Lo24000, (14)
0 0 0
and
B(t) B(t) 0
-1 .. -1
Bh(t) = | -PA "hd*(t) -PA "hy(t) 0 (15)
0 0 0
If we consider the vector =z = col(y,&,gl,...,;M), then sys-
tem (9) becomes
L] ® t
z(t) = Ahoz(t) + jglAhjZ(t—tj) + JOBh(t—s)z(s)ds +u(t), (18)
with
-1 0
u(t) = col(0,...,0, -PA hj y(t-s)¢(s)ds,0,...,0).
————— —o N —
n M
The linear block (10) leads to
© t
z(t) = Ahoz(t) + .g Ahjz(t-tj) + JOBh(t—S)Z(S)dS + u(t), a7

with

J=1
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p(t) = p(t)eol(0,...,0,1,0,...,0) + u(t).

n M
Accordingly, the nonlinear system (1) can be rewritten in the
form
R © t
wit) = Alow(t) + jZlAljw(t~tj) + JOBl(t_S)W(S)dS + £(t;w), (18)

where w = col(x,p,nl,...,nM) and f(tiw) is given by

0
f(taw) = col(O,...,O,—PA—l[j Y(t-s)¢p(s)ds + p(t)v(t)]1,0,...,0).
= e Ao

It is now obvious that systems (16) and (17) are linear sys-
tems of the form we dealt with in [21, [4]1, [6], while (18) con-
stitutes a nonlinear perturbed system. Taking into account condi-
tions (6) from the definition of the matrices A,. and B_, there
results h] 0

[ee]

{ve]
) HAth < +o, J ﬂBh(t)Hdt < oo, (20)
3520 0

for any real h.

Therefore, we can use the techniques developed in the papers
[21, [4]1, [6], in order to investigate the stability properties of
the systems (16), (17) or (18).

Let us consider now the system (16) for h = h2, and the lin-

edr block (17) for h = We shall prove that their solutions

hl'
coincide on the positive half-axis, provided initial data and
input function W{t) are chosen in a convenient manner.

More precisely, let us denote by =x(t), p(t), nk(t), k=1,

25...,M, a solution of (1), with initial data (7), (8). We
assume that this solution is defined on a certain interval [0,T],
T > 0.

On behalf of the above solution of (1) or (18), let uz con-
struct the solution F(t), E(t), Zk(t), k=1,2,...,M, of (9) or

(16), for t > T, corresponding to the following initial data:
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h(t), t < o0, At), t<o0,
y(t) = E(t) = (21)
ox(t), 0<t<T, L e(t), 0<t<T,

and E&(T) = nk(T), k=1,2,...,M. The existence and uniqueness
of the solution y(t), E(t), Zk(t), k=1,2,...,M, are guaran-
teed by the results given in [2], [4]. As said above, (9) is con-
sidered for h = h2.

Concerning the linear system (block) (10) or (17), we are
interested in the solution y(t), &(t), Qk(t), k=1,2,...,N,
corresponding to the initial data h(t), xo, AMt)s Py ﬂﬁa
k=1,24...,M, and to the value h of the parameter h. More-

1
over, we assume that the input u(t) is given by

PATTL + p(t) - (), 0 <t ST,
up(t) = : ' (22)
-1 —
-PA (h2_hl)V(t)’ t>T,
with
V(t) = (c¥fy)(t) + (aE)(t), t > T. (23)

Lemma 1. With the above mentioned notations, the following equal-
ities hold true:

y(t) = =(t), &(t) = p(t), ck(t) = nk(t), k=1,2,...,M, 0<t<T,
(2u)
and
y(t) = y(t), &(t) = E(t), g, () =T (), k = 1,2,...,M, t > T.
k k (25)

Proof, If we denote u=y -x, v=2~&-0p, L ST

k=1,2,...,M, on [0,T) and u=y-y, v=2£&-F¢, W= Gy

- ZL, k=1,2,...,M, on [T,»), then we find from (1), (9,
(10) and (22):
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[(a(t) = (Au)(t) + (bv)(t),

® M -1
{ v = - ] g Ao - w (007, (26)
k=1

%k(t) = A Lv(e) - w (0)], Xk =1,2,...,1

\

The equations in (26) hold true on R+. First, we restrict our

considerations to the interval [0,T]. According to our assump-
tions in constructing x, p, nk and y, &, Ck’ there results that

u(t) =0, v(t) =0, wk(t) £0, k=1,2,...,M, on [0,T].
Indeed, u, v, W satisfy a homogeneous system and the corre-

sponding initial data are all zero. Then, let us consider (26) as
a system with initial data on (-®,T]. According to (21) and to
the above established equalities on [0,T], the solution y(t),
E(t), Ck(t) of (10), with the control function given by (22),

must coincide with the solution y(t), E(t), E%(t) of (9), i.e.,
(25) hold true.

This ends the proof of Lemma 1.

Remark. One obtains from Lemma 1 that ¢(t) from (10) can be
represented as
vit), 0<t<T,
Y(t) = (27)
v(t), t > T.
Next lemma is a dlrect consequence of a result established in
[5]. We denote by HA(t) the map redu01ng to h(t) for t <O,
such that h(t) = 0 for t > 0. A(t) 1is defined similarly.
Lemma 2. Let y(t), &(t), Ck(t) be the solution of (10), corre-
sponding to the control function uT(t) given by (22), the ini-
tial data h(x), xo, Alt), Py2 nﬁ, k=1,2,...,M, and h = hl'
Then, this solution is identical with that of the linear system
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yp(t) = (Ay)(€) + (bE)(E) + jz;Ajﬁ(t—tj) + jz;bji<t-tj>,
. M
E () = —kngkA-l[ET(t) - 4o (D)7 = PATh, [ety, ) (0)
v i L rerhy ey (28)
. +j§oaj£T(t—tj) + joy(t—s)ET(s)ds] - PA l[(c«h)(t)

o 0
+j§lujk(t~tj) + J oo“y(t—s)k(s)cils] + uT(t),

\ CkT(t) = Ak[gT(t) - ckT(t)], k = 1,2,...,M,

with zero initial data on (-%,0) and the data xo, Py> ng at
t = 0.
Indeed, if (10) is comnsidered instead of (1), then (28) repre-

sents nothing else but the system given by formula (11) in [5].
Of course, (10) is to be considered for h = h,, and with u(t)

= uT(t), given by (22).

Before proceeding further with the investigation, let us
point out that denoting

,

© t
wT(t) = (c*yT)(t) + jgoajET(t—tj) + Joy(t—s)ET(s)dS, t >0,
{ (29)
R <o N 0 .
w0<t> = (c*h)(t) + ajx(t-tj) + J y(t-s)A(s)ds, t > O,
\ i=1 et

and taking into account the relations

y(t) = yo(6) + (o), B(6) = £(0) + A(¥), z(r) = g (8), (30)

and (27), we obtain

{ P(t)

v(t) = wT(t) + wo(t), 0<t<T,
(31)

1 Pt) = (e) = Pole) + Yy (e), t>T.
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Lemma 3. Any solution of system (1), that satisfies the initial
constraints 1 + p(0) >0, 1+ ni(O) >0, i=1,2,...,M, satis-

fies also

1+ p(t) >0, 1+ ni(t) >0, 1=1,2,...,M,

for t > 0.

The proof is elementary and can be found in [11]. It is use-
ful to point out that the equations for n.(t) can be written in
the form +

20+ (01 + A0+ 0 (0] = A1 + o(6)],

The following notations are necessary in order to state the
main stability results of this paper. TFirst, we consider the
rational function

M B
1. -1 Kk -1
(1+A ) T,
kzl StA

which represents the transfer function corresponding to the effect
of the delayed neutrons. Next, let us consider the transfer func-
tion

R(s) = s~ (32)

K(s) = 3%(s)[sI - A(s)1 1B(s), (33)

where é(s) is the symbol of the operator A given by (2)
b(s), c*(s) have similar definitions (see [2]). Further, let us
assume Y,(s) = k(s) + o(s) and

v,(s) = R()1 + PA_lth(s)Yo(s)]_l, : (34)

Yz(s) = PA lhlyo(s)yl(s), hl > 0. (35)

Theorem. Consider the system (1), with A, b, c* and o given
by (2)-(5). The conditions (6) are supposed to hold true, while
constants Bk, Ak, k=1,2,...,M, A and P are assumed posi-
tive. Assume further that:

(a) detlsI - A(s)1 #0 for Res >0, t.e., the linear

system x(t) = (Ax)(t) <s asymptotically stable;
(b) There exist some numbers hys hos 60, 61,.62, such that

0<hy <1<hy, § >0, §,>35 >0, with

dl + 62 >0, and
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(1°) the linear system (9) is asymptotically stable for

h=h and h=hy

(2°) the numbers Y, € (o, l—hl) and ?6 € (o, /E;ll) are
so chosen that for the real function
-1.2
®(E) = & - fn(1+) - (2h2) g
one has

2(£) < ¢(/hy-Limin{1,8 AT k= 1,2,... 1],

as soon as & € [“Yo’?bjj
(3°) if

-1 -1 -1 2
H(s) = 8 [(h,-h,) +hy 7Y, () 1+ 8.y, (s) + 8, PA (h2—hl)|yl(s)| Yo(s)s

(36)
then
Re H(iw) > 0, w € R, (37)
holds true when 60 > 0, and besides (37),
_lM ©
S, A kglkk + [8h + 62(h2—hl)3(a0—j§l|aj|) >0 (38)

holds true when 60 = 0.
Under the above assumptions, each solution x(t), p(t), nk(t),
k = 1,2,...,M, of the system (1), with
1 2
Ih(E), [A(t) | € L7(R_,R) N L°(R_,R), (39)

ie defined on the positive half-axis and tends to zero at infinity
M
Ln(x(ol+ [o(O) [+ ] [n ()]) =0, as t =+,
k=1

provided certain initial constraints are imposed (see [6]).

Proof. First, we consider the linear block (10), for h = hl and

u(t) = uT(t) as given by (22). It is assumed that T > 0 is




C. Corduneanu 101

chosen such that the solution =x(t), p(t), nk(t), k =1,2,...,M,
be defined on [0,T]. Let us associate to (10) the integral index

T

- -1 -1
¥(T) = SOJOuT(t)[(hQ—hl) UTﬁt) + PA TyY(t)ldt
et

i -1
+ Jog(t)[aluT(t) t 8,PA “(h,-h Jp(t)Idt. (41)

The initial data for (10) are the same as for (1). Taking into
account (24) from Lemma 1 and (22), one obtains by means of ele-
mentary calculations

T
-1,2 -1 2
8o(PA ) (hy-h)) Jo[hl- 1-p()1lh, - 1- p(£)IV7(t)dt

x(T)

i

6, h [a(T) - o)l

1 T 2 -1 -1
- GlA kZlBkJO[p(t)—-nk(t)] {h2[l+-p(t)] [li-nk(t)] -l}dt
M T )
_ (62-61)(h2—hl){Ql(T)— Ql(o)+-A klekJO[p(t)-nk(t)]

El1'p(t)]_l[li-nk(t)]_ldt}, (42)

with

Q)

M
-1 -1
oo(r) + 17 | Ba o (0)),

1

¥
2, (8) = ¢(p(£)) + A kngklk o(n, (£)),

$(g) = & - &n(1+8),

where ®(E) is the function defined in the statement of the The-
rem., Indeed, one gets from (22), (2u4) and (27)
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T
JOUT(t)[(hz—h

(pA 12

i

(PA"1>2J

(eAH 2

¥ (PA_l)QJ

(PA™1)%(

We have furth

T
J E(t)uT(t)dt
0

equency Domain Criteria for Nuclear Reactor Stability

-1 -1
l) uT(t) + PA TY(t)]ldt

T
-1 2.2
h2-hl) JO[:H p(t) -~ hl] vi(t)dt

T 2
[1+p(t)- hl]\) (t)dt
0

T
-1 2
h2-hl) Jothl -1- p(’c)][h2 -1-p(t)Iv(t)at

T 2 ~1.2(" 2
[1+ p(t)—hlilv (t)dat - (PA ) J [1+ p(t)-hl]\) (t)dt
0 0

h.-h )'l T[h -1-p(t)Ih,-1-p(t)] 2(t)dt

P A P T P p~ E- P .

er

il

T M
J p(t){B(t) + 471 ] B [oCt) - n ()] + A h (1) }at
0 k=1

T o ~1 M 2
= f {e()p(t) + 477 ] B, [p(t) -, (£)]

0 k=1

-1 M -1 T

A kZlBknk(t)[p(t) —nk(t)]}dt+PA hljop(t)\)(t)dt

+

T . N 1 .
f fete)oe) + 477 ] 8y Ty (t)ny (6)fat
0 k=1 _
-1 M T 5 -1 T

) B}J Co(t) -n, (£)1%dt + PA hlJ p(tIv(t)dt
k=1 70 0

+

M T
1.2 -1 -12
S ()+ A~ ) B n (t)]l
2 =N LY o

T

1 T 2 -1
) Bkj [p(t)—nk(t)] dt + PA hlI p(t)v(t)at
k=1 /0 0

+
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and

T T
J g(t)yp(t)at J o(t)v(t)dt
0 0

T M
-P-lAI [6Ce) + A1 § g A (6) + PATHo(E) Tt
0 k=1

"11&[()1\—1%{ 1 o] - [
-P TALp(t) + B n, (t l-J\)tdt.
k=1 K% Mk o Jo

In order to evaluate the last integral, we shall use again the
second equation of (1). According to Lemma 3, we can divide both
members of the second equation of (1) by 1 + p(t), provided Py

is such that 1 + po > 0, Therefore,

~1e 1Y -1 -1
[1+p(0)T () =-A"" ] B, [1+0(t)] Cp(t) -n (£)] - PA (1),
k=1

which leads to
-1 ¥ -1 -1
[1+p()T7p(t) = -A7" ] B A T[1+p(t)1 0, () - PATw(t),
k=1

if one comsiders also the third equation of (1). But
[1+p(6)17 M, (£) = [L+n (£)T71 (1)
k k k
- [+ () T L+ ()17 To() - n ()1, (),

which allows us to write

M
[L+p(0)T0C0) + A7 § g AT [+ n (017, (0)
k=1

M
-1 -1 -1 1 . .
A kglskkk [1+0()T 71 +n (1)1 TpCe) - n (£)In, (£) - PA V(1)

M
e )

B [1+p(01 7 1+ (£)1 7 o(e) - n, (£)1° - PA™M(t),
k=1
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Hence
¥ T
{enl1 + p(£)]1 + A7 ) B Ay Lnll + nk(t)]}
k=1 0
M (T T
Aty g J [o(t)-n, (£)1°[1+e(t) T e, (£)1 tat —.PA_lJ v(t)dt.
k=1 %o k k 0

Summing up the above considerations, we get the formula (42) for

X(T).
We shall write now X(T) in another form. Namely

00

. ] N .
Xx(T) = SOJOuT(t){(hQ-hl) uT(t) + PA [wT(t) + wo(t)]}dt

00

+ J &T(t){éluT(t) + 62(h2—hl)PA_l[wT(t) + wo(t)]}dt
0

. —l ol
- (62-61)(h2—hl)PA JTgT(t)[wT(t) + wo(t)3dt. (u43)

Indeed, taking into account (22), (27) and (31), one sees that the
integrand is zero, for t > T, in the first integral from (43).

Concerning the second integral in (43), we have
00

. -1 '
| JTET(.t){GluT(t) + 8,(hy-h JPAT [y (1) + Y (t)]}at

H

00 _loo
GlJTST(t)uT(t)dt + 62(h2—hl)PA JTgT(t)[wT(t) + wo(t)]dt

-1 @
_6l(h2-hl)PA JTET(t)[wT(t) + wo(t)]dt

-1 @
+ 62(h2—hl)PA ITgT(t)[wT(t) + wo(t)]dt

i

_loo
(52—61)(h2—hl)PA JTET(t)[wT(t) + wo(t)]dt.

which proves the validity of (u43).
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Let us point out that, under our assumptions, the second
integral in (43) is convergent. Indeed, taking (39) into account,
there results wo(t) € Ll N L2. From condition (b) in the state-
ment of the Theorem, one derives uT(t),ET(t) € LP, 1<p <,
using again the results in [4]. Consequently, the integrand
belongs to Ll.

Before using Parseval's formula to find a new form for x(T),
we shall express conveniently certain Laplace transforms of some

functigns we deal with. First, let us compute the Laplace trans-
form ET(S) from the system (28). Taking the Laplace transform

of both sides of each equation and substituting the values of
yT(s) and EkT(s) in the second equation, there results

Ep(s) = ¥ (si(s) + v (s)lpy + N(s)], ()

with Yl(s) given by (34) and

N(s)

M
-1 0 -1 -1
A leknk(s+xk) - PATH M(s),

k (45)

M(s)

i

U, (s) + F()IsT - A)1 Mm(s),

where
0 © -st, (0 _st o -st. (0 _st
m(s) = x + ) A.e JJ h(t)e ™~ -dat + ) b,e JJ A(t)a " "dt. (46)
3=1 9 -t j=1 3 -t
3 j

From the definition of wT(t) (see (29)), one finds

@T(s)

& (s)y(s) + &<s>§T<s)

il

YO(S)ET(S) + ¢*(s)[sI - A(s)]—lm(s)
= Yo(s)Yl(S)ﬁT(S) + YO(S)Yl(S)[pO + N(s)]

c*(s)[sI - A(s)]—lﬁ(s). : (46)

+

The proof has to be continued in accordance to the following
feature: the parameter 60 # 0, or 60 =0,
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Case 1 (60 # 0). In this case, we shall apply a lemma due to

Popov [10], based on Parseval's formula, in order to find another
form for X(T). We start from (43) and denote:

{ fl(t) = -&,(1),
- -1
fz(t) = 6luT(t) + 62(h2—hl)PA [wT(t) + wo(t)],
-1 -1 (48)
£,(t) = 60(h2—hl) uT(t) + GOPA [wT(t) + wo(t)],
L £,(8) = - (e).

Taking into account (44) and (47), we find out the following for-
mulas for the Fourier transforms of the functions defined by (48):

%j(im) = Uj(iw)%q(im) + V3w, § = 1,2,3, (49)
In (49), the functions Uj and Vj’ j = 1,2,3, are given by

( Ul(iw) = Yl(iw),

. -1 . .
-U2(1w) 61 + 62(h2—hl)PA Yo(lw)Yl(lw),

. -1 -1 .
—Us(lw) = 50(h2—hl) + Gohl Y2(1m),

(50)
Vl(lw) = -Yl(lm)[po + N(iw) 1,
V,(i0) = 8,(hy=h JPA™Hy, (iw)y, (iw)lp, + N(iw)] + M(iw)],
Vs(iw) = 6OPA_1{YO(iw)Yl(iw)[po + N(iw)] + M(iw)}.
Popov's lemma states that

* * 1 (7 W(iw) de
Jofl(t)fQ(t)dt + JOfS(t)fu(t)dt-i §ﬁrj_m lﬁg—ﬁz%zrr—

+ E%Fj-w[Vl(iw)VQ(—iw) + Vl(-im)VQ(iw)]dw, (51)

with H(s) given by (36), and
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]l

W(iw) Vl(iw)Uz(—iw) + V2(iw)Ul(—iw) + V3(iw)

1

-1 . .
[cSOhl Yz(lw) + dlyl(lw)

-+

262PA-llyl(iw)]QReYO(iw)[po + N(iw)]

-+

PATI[S, + 85(h,-h )y, (~iw) TMCiw) . (52)
From (36) there follows
Lin Re H(iw) = 6 (h,-h ) ™" > 0, as [u] + . (53)
Consequently, one finds 80 > 0, such that
Re H(iw) > €y W € R. (54)

Taking into account (54), it suffices to show that W(iw),
Vl(iw), V2(iw) € L2(R,C), in order to make sure that the inte-
grals in the right hand side of (51) are convergent. Indeed,

R(iw) given by (32) behaves at infinity like ]w]_l, while
yo(iw) is bounded on R. The boundedness of Yo(im) is a conse-

quence of conditions (6), of the fact that X(s) = [sI - A(s)]_l,
and of condition (a) from the Theorem (see also [4]). Moreover,

Yl(iw) and Y2(iw) also behave at infinity like |wi_l. It is
an elementary matter to show that: m(s) is bounded for Res = 0
M(iw) is a function in L2; N(iw) also belongs to L2. Summing
up the above discussion, one finds out that W(iw), Vl(iw) and
V2(iw) are in LQ. Therefore, the right hand side of (51) is

finite.

Substituting in (51) the functions fj(t), j = 1,2,3,4, by

their values given by (48), and taking into account (43), one ob-
tains

00

1 |W(iw)|2

- L [ 1 . . e
~x(T) < Eﬁ?j_“, Re H(1i0) dw + IEFJ_M[Vl(lw)VQ(—1w)+Vl(—lw)V2(1w)]dw

_loo
+ (62—61)(h2¢hl)PA4 [TgT(t)[wT(t) + wo(t)]dt. (55)
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We want to transform now the last integral occurring in the
right hand side of (55). We have to repeat practically some com-
putations encountered in deriving formula (42). Taking into ac-
count that (9) is asymptotically stable for h = h2, there
results

PA‘lJ gT(t)[wT(t) + wo(t)]dt = PA_lj E(t)v(t)at
T T

I

o . M
5t ForEe + 17 | 8 @ -F e)ar
T k=1

. Dyd 8 F[E(w ST () 1%t
k=1 Kt K

‘ M
1 2 -1 -1 2 -
EE;'[D (TYy+ A kzlﬂkxk nk(T)]— (Ah2)

Hence, (55) becomes now

1 Jw [W(iw) 24w 1 (%
o
o0

-x(T) < = Re B(o) T WJ—w[Vl(iw)Vz('—iw)wl(—iw)VQ(iw)]dw
A (8,-8.)(ho-h )[p2(T) + AT %4‘ TGN
T oon (070 hyhy L * L BT
2 k=1
M

-1 © _ — 2
- (Ah2) (62—61)(h2—hl)k§lska[£(t) - CkCt)] dt. (56)

Let us compare now (42) and (56). One obtains, after per-
forming elementary operations and neglecting certain terms to
strengthen the inequality:

M T
QT) + 8. [8,h +6 (h,-h )T A T B J [o(t) - n (£)1°
17711 2772 7L k=1 k 0 k

x {n,[1+p() 17 [+ n ()17 - 1}ae

-1 -1, ,-1.2 T
+ 60(h2-hl) [Glhli~62(h2—hl)] (PA ™) Jo[l+-p(t)-hl]

X [h2-l-p(t)]v2(t)dt
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< R00) + (8,8 )(hy=h) ){2h L8 by + 6,(hy-n )1}

M
x [o7(0) + A" ¥ B (0)]
k=1

. ' 0 2.
-1 W(iw) | dw
+ {uml8ihy + 8,(hy-h) )1} {J_m 3Re H(iw)
+ Ij-w[vl(iw)v2(-ig?<+ v, (-iw)V,(iw) Jdw|}. (57)

[

Using (57), it is:possible to prove that the solution of (1)
exists on the whole positive half-axis, provided the initial data
satisfy adequate conditions.

Let us consider the function of M + 1 real variables
| -1 u -1
punyseeesny) = 0(p) + A kzlekxk o(n, ), (58)

defined on the set

0<1+p 5_%52, 0<l+m < /EQ, k= 1,2,...,M. (59)

The set (59) contains the origin, i.e., p = nl = ees = nM = 0.

From the definition of @(§) there results that £(0,0,...,0) = 0.
But ®(&) >0 for -1<§&< h2 - 1, as it can be readily seen

from its definition, the equality taking place only for & = 0.
Therefore, the minimum value that Q(p,nl,...,nM) can take on the

boundary of the polyhedron (59) is

[ @(Jﬁgl-l)min{l,skxilA'l; k= 1,2,...,M}. (60)

i YO ahd ?6 are chosen as mentioned in the statement of the
Theorem, i.e. such that @(&) < & for & € [—Yo,?b], then we

impose the following restrictions to the initial values:

-1 < -y, < p(0) <.§6 < /E; -1,

-1 < -y, < nk(o) < ?6 < JE; -1, k=1,2,...,M (61)
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It is assumed that [—YO,?b] is the maximal interval on which
2(g) < L.

We are going to show that the inequalities

Yo < PE) <Y, -¥y <M (E) <Y, ko= 1,2,.00,H, (62)

hold ture on the positive half-axis. Indeed, for continuity rea-
sons, the inequalities (62) must be satisfied on a certain inter-
val [O;TO), T > 0. Again we assume that this is the maximal

0
interval. Therefore, at least one among the inequalities (62)
becomes an equality for t = TO, if TO is finite. But (61) and
(62) imply

[1+ p(t)I[1 + nk(t)] <hy, ko= 1,2,...,M, t € [O,TO), (63)
[1+ p(t) - h d01 + o(t) - h,] <0, t&[0,T), (64)

the last one being a consequence of hl <1- Yo From (57), (63)
and (64) we get

-1
QT ) < Q0) + (8,-6)(h,~h ){20,[8 b, + §,(h,-h )]}

M
x [pf + A'lkglskx];ln}f(on

00 . 2
+ {4ﬂ[61hl + 62(h2—hl)]}_l{J [WGiw) | “aw

o 2Re H(iw)

+ |J m[Vl(iw)VQ(iw) + Vl(-iw)VQ(iw)]dwl}. (65)

Taking into account (34), (35) and (50), one sees that the right
hand side of (65) can be done arbitrarily small, provided |p(0)/|,

Ink(O)I, ﬂxoﬂ, ]h|L and leL’ are chosen small enough. If we

choose the initial data such that the right hand side in (65) be
smaller than &£ given by (60), there results Q(TO) < %. But

this does not agree with the fact that T, is maximal, which

0
implies Q(TO) = £. Hence, (62) hold true for t € R+.
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From (57) one derives

ﬁ[l + o(t) - b Ih, - 1 - p(t) W (t)at < const. (66)
the constant in the right hand side being independent of T.
Hence, the integrand belongs to Ll(R+,R), Since p(t) is
bounded and 1 + p(t) - hl > 1 - Yo - hl >0, h,-1- p(t) > h,
-1 - Vb > 0, one obtains V(t) € LQ(R+,R). Furthermore, we find
that [1 + p(£)Jv(t) € LQ(R+,R). From the last M + 1 equations
of the system (1) there results

lim p(t) = lim nk(t) =0 as t-=®, k= 1,2,...,M. (67)

Now let us consider the variable =x(t) of the system (1).
Using the variation of constants formula [2], we find

t

x(t) = X(t)xo + J X(t-s)(bp)(s)ds + (Yh)(t), t € R+, (68)

0

with

© .0
(Yh)(t) = J f
j=1’ -t
J
Consequently, =x(t) is also definite on R+ and, due to the fact
that IXCE)I » 0, I(YR)(£)l » 0, |p(t)| >0 as t + », one
obtains

X(t-t.-uwA.h(u)du, t € R, . (69)
J J +

limlx(£)l = 0 as t = o, (70)

Case 2 (60 =0). If 66 = 0, then ¥x(T) given by (43) becomes

los]

. 1 2 . : I
X(T) = -36.0%(0) + Jong{almT(t) - EL(0) 1+ 8, (hy=h DPAT T (1)

+ wo(t)]}dt - (62—61)(h2—hl)PA—lJ E(t)v(t)dt. (71)
T

E,?(t) and

I\Z)]I—-J

Indeed, the integral of ET(t)éT(t) is
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ET(O) = p(0), ET(W) = 0. The last equality is a consequence of

the fact that the stability of the system (9) takes place for
h = h2, and of Lemmas 1 and 2.

From (44) we can find ﬁT(im) and applying Parseval's for-

mula to the first integral occurring in (71) one obtains
(oo} . _l
IOET(t){Gl[uT(t) - & (D)1 + 62(h2—hl)PA [y (t) + wo(t)]}dt

.&_Rej £ (-10) {8, [(v, (1)) E (i) - N(iw)]

27

+ 8,(h,-h JPA Ty (1) (iw) + M(iw)1}dw.  (72)
If we denote
V(iw) = -8,N(iw) + 62(h2—hl)PA_lM(iw) (73)
and
a(iw) = Sl(yl(iw))_l + 52<h2-hl>pA‘lyo(iw), (71)

then (71) and (72) lead to

{oe]

J Re G(iw)| ET(iw) | 2dw

1

1. 2
X(T) = —5510 (0) + o

+ Z%FJT;Re ET(—iw)V(iw)dw - (62-61)(h2—hl)PA‘lITEKt)3(t)d€%5)

Let us remark further that (36) and (74) give (for 60 = 0)

v, (i) | Re 6(iw) = Re H(iw) > 0, (76)

if (37) is also considered. Moreover, one derives from (74), by
elementary manipulations

M [e)
: . -1
173153 6(iw) > 8,4 kzlsk + [alhl+-aQ(hQ—hl)](ao—j§l|ajl) > 0,(77)
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taking also into account (38). From (76), (77) there results the
existence of €_ > 0, such that

0
Re G(iw) 3_&0, w € R. (78)
Therefore, if € is such that 0 < 2¢ < €y» one derives from (75)
1. 2 1 (7 > 2
x(T) = -—Q—Glp (0) + -Q-T—FJ_oo[Re G(iw) - EJIET(iw)I dw
+ 22| Re £.(-iw)V(in)dw
2m T
- (62—61)(h2—hl)PA_lJ E(t)v(t)at + e[ E%(t)dt. (79)
T 0

Simple transformations in (79) lead to

x(T)

1 2 1 < . 1 V(iw) 2
_= = /Re Cia) — & = ___Viiw)
> Glp (0) + 2ﬂ»[_ |VRe G(iw) - € ET(lw)+ 7 R | “dw

T St
dw - (62—61)(h2-hl)PA [ E(t)v(t)dt

1 Jm |v(iw) |
T

0 _Re G(ie)-€

CO

T, =2
+ ej p(t)dt + EJ £ (t)at, (80)
0 T

if one takes into account Lemma 2.

According to the formula preceding (56), (80) can be rewrit-
ten in the form

il

dw

X(T) 5’]?

1. 2 1 [, 2 1 (%
-—5619 (0) + J l'l dw - 'éFJ'_ool'

M .
-1 2 -1 ~1.2
(2h2) (62—61)(h2-hl)Fp (T) + A kzlskxk nk(T)]

M
-1 - — 2
(fh,) (62-61)<h2-h1>k§lsijIa(t) - T (0 |%at

-+

+

T 2 =2
sf p (t)dt + eri (t)dt. (81)
0 T
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Another form for x(T) has been obtained above, valid for

any 60. Now taking 60 = 0 in (42) one has

il

x(T) —6lh2[Q(T) - Q(0)]

5 AT % s [ toce) (01 h, [+ p(t) T 1+ ()11 - 1)d
1L B P T ottt et B - Lt

M T
- -1 2
- (62—61)(h2—hl){91(T) - 2,00 + A klekJO[p(t) -, ()1

X

[1+ ()10 + nk(t)]‘ldt}. (82)

If we equate now the values of ¥(T) given by (81) and (82),
one obtains after elementary operations an inequality like (57):

-1 -1 u T 2
T) + S ATT[8h, + 8,(hy-h )] kzl ska[p(t) - n (£)1°{n,[1

-1 -1 -1 T 2
+ p(t)] [1+Ank(£)] —'l}dt+s[6lhl+ 62(h2—hl)] J’ p (t)at
) 0

1 Jw V(iw) 2 s

-1
<Q(0) + [8 h) + 8,(hy-h )] {5 __Re c(iw)-¢

M
DRSS ON

1 2 1 2 -
+ =8 p7(0)+ 55— (8,.-8_ )(h,-h_d[p (0)+ A
271 2h2 2 1 271 k=0 (83)

The inequality (83) can be used in order to prove that any
solution of (1), such that (61) hold true, is defined on R, and

satisfies also (62). Moreover, (83) implies p(t) € L2(R+,R)
because the right hand side in (83) does not depend on T, and
therefore, ngQ(t)dt is bounded above by a fixed number (for

each set of initial data).

From the first equation of (1), and p(t) € LQ(R+,R), one
obtains (70), taking into account that (bp)(t) € L2(R+,Rn) and
the results in [4]. Furthermore, the equations in My and p(t)
€ LQ(R+,R) imply nk(t) + 0 as t - +%, Finally, p(t) >0 as
t > < Dbecause it is bounded on R+ and this property implies the

boundedness of p(t) on R, (hence, p(t) is uniformly
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continuous on R+). Consequently, (67) are also verified in Case

2, and together with (70) yield (40).
This ends the proof of the theorem stated above.

Remark. . In order to carry out the proof of existence of solu-
tions on the half-axis R+, such that (62) be verified, a local

existence result for (1) is necessary. Such a result is easily
obtainable by means of the contraction mapping theorem.

For further results concerning the stability of nuclear reac-
tor systems, the reader is sent to [1], [3]1, [8]1, [9]1, [11]. For
new results concerning integral equations that might be used in
investigating more sophisticated nuclear reactor systems, the
paper [12] offers a valuable source.

The author expresses his appreciation to V1. Rdsvan for help-
ful discussions during the period this research has been started.
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