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1 Introduction

Harald Bohr’s interest in which functions could be represented by a Dirichlet series, i.e. of

the form
∞∑

n=1
ane−λnz, where an, z ∈ C and (λn)n∈N

is a monotone increasing sequence of

real numbers (series which play an important role in complex analysis and analytic number
theory), led him to develop a theory of almost periodic real (and complex) functions, between
the years 1923 and 1926. The theory of almost periodic functions was strongly extended
to abstract spaces, see for example the monographs [9], [17], [18] for Banach space valued
functions and [7], [17], [19] for complete locally convex (Fréchet) space valued functions.
Also, in the paper [5] (see also [18, Chapter 3]), the theory has been extended to the case of
fuzzy-number-valued functions. The purpose of this paper is to extend the main properties
of almost periodic functions that are defined on R

n with values in Banach spaces ( see
e.g. [21, Chapter 9] ), to the class of almost periodic functions that are defined on R

n

with values in other important abstract spaces in Functional Analysis, namely the p-Fréchet
spaces, 0 < p < 1, which are non-locally convex spaces.

2 Preliminaries

It is well known that an F -space (X, +, ., ‖.‖) is a linear space (over the field K = R or
K = C) such that ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X, ‖x‖ = 0 if and only if x = 0,
‖λx‖ ≤ |λ|‖x‖, for all scalars λ with |λ| ≤ 1, x ∈ X, and with respect to the metric
D(x, y) = ‖x− y‖, X is a complete metric space (see e.g. [10, p.52] or [13]). Obviously D is
invariant under translations. In addition, if there exists 0 < p < 1 with ‖λx‖ = |λ|p‖x‖, for
all λ ∈ K and x ∈ X, then ‖.‖ will be called a p-norm and X will be called p-Fréchet space.
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(This is only a slight abuse of terminology. Note that in e.g. [3] these spaces are called p-
Banach spaces). In this case, it is immediate that D(λx, λy) = |λ|pD(x, y), for all x, y ∈ X,
λ ∈ K. It is known that F -spaces are not necessarily locally convex spaces. Three classical
examples of p-Fréchet spaces, non-locally convex, are the Hardy space Hp with 0 < p < 1
that consists in the class of all analytic functions f : D −→ C, D ={z ∈ C; |z| ≤ 1} with the
property

‖f‖ =
1

2π
sup{

2π∫

0

|f(reit)|pdt, r ∈ [0, 1)} < +∞

the sequences space lp

lp = {x = (xn)n; ‖x‖ =

∞∑

n=1

|xn| < ∞}

for 0 < p < 1, and the Lp[0, 1], 0 < p < 1, given by

Lp[0, 1] = {f : [0, 1] −→ R; ‖f‖ =

1∫

0

|f(t)|pdt < ∞}

More generally, we may consider Lp(Ω,Σ, µ), 0 < p < 1, based on a general measure space
(Ω,Σ, µ), with the p-norm given by ‖f‖ =

∫
Ω
|f |pdµ. Some important characteristics of the

F -spaces are given by the following remark.

Remark 1. Three fundamental results in Functional Analysis hold for F -spaces too : the
Principle of Uniform Boundedness (see e.g. [10, p.52]), the Open Mapping Theorem and
the Closed Graph Theorem (see e.g. [13, p.9-10]). But on the other hand, the Hahn-Banach
Theorem fails in non-locally convex F -spaces. More exactly, if in an F -space the Hahn-
Banach theorem holds, then that space is necessarily locally convex space (see e.g. [13,
Chapter 4]).

3 Basic Definition and Properties

In this section we develop the theory of almost periodic functions that are defined on R
n

and taking values in a p-Fréchet space, 0 < p < 1 and also we use the same notation for a
p-norm in a p-Fréchet space with 0 < p < 1 and a norm in R

n. Everywhere in this section,
(X, +, ., ‖.‖) will be a p-Fréchet space with 0 < p < 1 (over the field K = R or K = C).
Also, denote D(x, y) = ‖x−y‖. Although most of the results in this paper are similar to the
results for the functions defined on R

n with values in Banach space ( see e.g. [21, Chapter
9] ) because triangle inequality of the norm is used to prove them but yet we have given the
detailed proofs of these results. In the previous sections it was mentioned that the metric
D(x, y) = ‖x− y‖ is invariant under translations and satisfies D(λx, λy) = |λ|pD(x, y), for
all x, y ∈ X, λ ∈ K. Moreover D has some additional properties given in the following:

Theorem 1. (i) D(cx, cy) ≤ D(x, y) for |c| ≤ 1,

(ii) D(x + u, y + v) ≤ D(x, y) + D(u, v),



ALMOST PERIODICITY IN p-FRÉCHET SPACES 85

(iii) D(kx, ky) ≤ D(rx, ry) for k, r ∈ R, 0 < k ≤ r,

(iv) D(kx, ky) ≤ kD(x, y), ∀k ∈ N, k ≥ 1,

(v) D(cx, cy) ≤ (|c|+ 1)D(x, y), ∀ c ∈ R.

Proof. Properties (i) and (iii) are obvious, we shall give proofs of (ii), (iv) and (v) for the
proof of (ii) we have

D(x + u, y + v) = D(x + (u− v) + v, y + v)

= D(x + u− v, y) = D(y, x + u− v)

≤ D(y, x) + D(x, x + u− v)

= D(x, y) + D(x + v, x + u) = D(x, y) + D(v, u)

(iv) Since 0 < p < 1, we have D(kx, ky) = |k|pD(x, y) ≤ kD(x, y), for all k ≥ 1.
(v) If |c| < 1, then D(cx, cy) = |c|pD(x, y) ≤ |c|D(x, y) ≤ (|c|+1)D(x, y). If |c| ≥ 1 then

we get
D(cx, cy) = |c|pD(x, y)|c|D(x, y) ≤ (|c|+ 1)D(x, y)

which proves the theorem.

Now we recall some definitions and theorems about the Euclidean n-dimensional space
before giving the definition and properties of almost periodic functions that are defined on
R

n and taking values in the a p-Fréchet space, 0 < p < 1. Let R
n the usual Euclidean

n-dimensional space. The elements of R
n are the n-tuples x = (x1, x2, ..., xn) and a norm of

x ∈ R
n is given by

‖x‖ = (x2
1 + x2

2 + ... + x2
n)

1

2

A closed ball B(x0; r) in R
n with center x and radius r > 0 is defined by the set

B(x0; r) = {x ∈ R
n : ‖x− x0‖ ≤ r}

Definition 1. A set P is said to be relatively dense in R
n if there exists a number r > 0

such that P ∩B(x; r) 6= ∅, for all x ∈ R
n.

Remark 2. Super sets of a relatively dense set are relatively dense.

We also have the following two important theorems for the sequel. For the detailed
proofs of these theorems see [21, Chapter 9].

Theorem 2. A subset P of R
n is relatively dense in R

n if and only if, for some r > 0, we
have the relation R

n = ∪
p∈P

B(p; r).

Theorem 3. A subset P of R
n is relatively dense if and only if there exists a compact set

S ⊂ R
n such that S + P = R

n ( vector sum of S and P )

Definition 2. A function f : R
n −→ X is said to be continuous at x0 ∈ R such that

D(f(x), f(x0)) < ǫ, whenever ‖x− x0‖ < δ.
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Remark 3. From the triangle inequality satisfied by the p-norm ‖.‖ , it easily follows that
|‖x‖−‖y‖| ≤ ‖x− y‖, which immediately implies that if f is continuous at x0, then the real
valued function x 7−→ ‖f(x)‖ is also continuous at x0.

Definition 3. A continuous function f : R
n −→ X, is called B-almost periodic function,

if for every ǫ > 0, there exists a real number r = r(ǫ) > 0, such that in any ball B(x; r) of
radius r = r(ǫ) contains at least one point y with

D(f(x + y), f(x)) < ǫ,∀ x ∈ R
n

Remark 4. By using the concept of relatively dense set the above definition can also be
rewritten as: A continuous function f : R

n −→ X, is called B-almost function if for every
ǫ > 0, there exist a relatively dense set, which we denote by T (f ; ǫ), such that

sup
x∈Rn

D(f(x + y), f(x)) < ǫ,∀y ∈ T (f ; ǫ)

orD(f(x + y), f(x)) < ǫ,∀y ∈ T (f ; ǫ),∀ x ∈ R
n

The elements of set T (f ; ǫ) are called ǫ-translation vectors.

The following is a direct consequence of the above remark

Remark 5. If f : R
n −→ X is B-almost periodic and if y1 ∈ T (f ; ǫ1), y2 ∈ T (f ; ǫ2), then

y1 + y2 ∈ T (f ; ǫ1 + ǫ2).
This is because of the fact that

D(f(x + y1 + y2), f(x)) = ‖f(x + y1 + y2)− f(x)‖

≤ ‖f(x + y1 + y2)− f(x + y1)‖+ ‖f(x + y1)− f(x)‖

= D(f(x + y1 + y2), f(x + y1)) + D(f(x + y1), f(x))

< ǫ1 + ǫ2,∀x ∈ R
n

Theorem 4. If f is B-almost periodic, then the functions λf , ( λ is any scalar ),
∨

f :

R
n −→ X defined by

∨

f (x) = f(−x), Fh(x) = f(x + h) and G(x) = ‖f(x)‖, x ∈ R
n are also

B-almost periodic.

Proof. (i) Since f : R
n −→ X is B-almost periodic function so for every ǫ > 0 we can find

a relatively dense set T (f ; ǫ) such that

D(f(x + y), f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀x ∈ R
n

If λ = 0 then there is nothing to prove, so we suppose that λ 6= 0. Now ∀ y ∈ T (f ; ǫ),∀ x ∈
R

n, we have

D(λf(x + y), λf(x)) = ‖λf(x + y)− λf(x)‖ < |λ|pǫ, 0 < p < 1

This shows that T (f ; ǫ) ⊂ T (f ; |λ|pǫ) i.e. for every ǫ > 0 we can find a relatively dense set
T (f ; |λ|pǫ) such that

D(λf(x + y), λf(x)) < |λ|pǫ,∀ y ∈ T (f ; |λ|pǫ), ∀ x ∈ R
n, 0 < p < 1
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Hence it is proved that λf is B-almost periodic.
(ii) Since f B-almost periodic function, it follows that for every ǫ > 0 we may find a

relatively dense set T (f ; ǫ) such that

D(f(x + y), f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

Let −x = x
′

, therefore we have

D(f(−x
′

+ y), f(−x
′

)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x
′

∈ R
n

or
D(f(−(x

′

− y), f(−x
′

)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x
′

∈ R
n

Replacing x
′

by x we get

D(
∨

f(x− y),
∨

f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

This implies that T (f ; ǫ) ⊂ T (
∨

f ; ǫ). That is for every ǫ > 0 we can find a relatively dense

set T (
∨

f ; ǫ) such that

D(
∨

f(x− y),
∨

f(x)) < ǫ,∀ y ∈ T (
∨

f ; ǫ),∀ x ∈ R
n

and hence it is proved that
∨

f is B-almost periodic with −y as ǫ-translation vector.
(iii) Since f is B-almost periodic therefore for any ǫ > 0, we can find a relatively dense

set T (f ; ǫ) such that

D(f(x + y), f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

Replacing x by x + h we get

D(f(x + h + y), f(x + h)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

D(Fh(x + y), Fh(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

This implies that T (f ; ǫ) ⊂ T (Fh; ǫ) Therefore for every ǫ > 0 we can find a relatively dense
set T (Fh; ǫ) such that

D(Fh(x + y), Fh(x)) < ǫ,∀ y ∈ T (Fh; ǫ),∀ x ∈ R
n

and thus Fh is proved to be B-almost.
(iv) Since f is B-almost periodic therefore for any ǫ > 0, we can find a relatively dense

set T (f ; ǫ) such that

D(f(x + y), f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

Now

|G(x + y)−G(x)| = |‖f(x + y)‖ − ‖f(x)‖|

≤ ‖f(x + y)− f(x)‖

= D(f(x + y), f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n
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This shows that T (f ; ǫ) ⊂ T (G; ǫ). Therefore for every ǫ > 0 we can find a relatively dense
set T (G; ǫ) such that

|G(x + y)−G(x)| < ǫ,∀ y ∈ T (G; ǫ),∀ x ∈ R
n

this proves the almost periodicity of the function G(x) = ‖f(x)‖, x ∈ R
n. This completes

the proof of the theorem.

Theorem 5. Let f : R
n −→ X be B-almost periodic, then the range of f is bounded in X.

Proof. Since D(f(x), f(y)) ≤ D(f(x), 0X) + D(0X , f(y)) = ‖f(x)‖+ ‖f(y)‖, therefore it is
sufficient to prove that ‖f(x)‖ ≤ M1, ∀ x ∈ R

n where M1 is some positive real number .
Let, for any given ǫ > 0, the associated relatively dense set be T (f ; ǫ). By Theorem 2 we
have R

n = ∪
y∈T (f ;ǫ)

B(y; r) for some r = r(ǫ) > 0. Therefore for any x ∈ R
n, ∃ y ∈ T (f ; ǫ)

such that ‖x− y‖ ≤ r. Then, if x
′

= x− y, we have ‖x
′

‖ ≤ r, y ∈ T (f ; ǫ). Now

f(x) = f(x
′

+ y) = f(x
′

+ y)− f(x
′

) + f(x
′

)

Therefore we have

‖f(x)‖ = ‖f(x
′

+ y)− f(x
′

) + f(x
′

)‖ (1)

≤ ‖f(x
′

+ y)− f(x
′

)‖+ ‖f(x
′

)‖

= D(f(x
′

+ y), f(x
′

)) + ‖f(x
′

)‖

Since x
′

7−→ ‖f(x
′

)‖ is continuous function on the compact set B(0; r), hence it is bounded
there in. Take now y ∈ T (f ; ǫ) and x

′

∈ B(0; r) ⊂ R
n, then by B-almost periodicity of f we

have

D(f(x
′

+ y), f(x
′

)) < ǫ

Thus from (1) we have

D(f(x), 0X) = ‖f(x)‖ ≤ ε + sup
‖x′‖≤r

‖f(x
′

)‖ = M1(say),∀ x ∈ R
n

This completes the proof of the theorem.

Theorem 6. (i) If f : R
n −→ X is B-almost periodic, then f is uniformly continuous

over R
n.

(ii) If (fk)k is sequence of B-almost periodic functions, fk : R
n −→ X, 1 ≤ k < ∞. If

fk −→ f uniformly to f on R
n then f is B- almost periodic.

Proof. (i) Let f : R
n −→ X be B-almost periodic function and let for any ǫ > 0, its

associated relatively dense set be T (f ; ǫ
3 ). Therefore by Theorem 3, any x

′

∈ R
n can be

written as x
′

= x + y, where y ∈ T (f ; ǫ
3 ), ‖x‖ ≤ r, for some real number r = r( ǫ

3 ) > 0. Now
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by the uniform continuity of f on the closed ball B(0; r) = {x ∈ R
n : ‖x‖ ≤ r} we can find

δ = δ( ǫ
3 ) > 0 such that

D(f(u1) , f(u2)) <
ǫ

3
, whenever ‖u1 − u2‖ < δ and ‖u1‖ ≤ r, ‖u1‖ ≤ r

Take now any pair x
′

1, x
′

2 ∈ R
n such that ‖x

′

1 − x
′

2‖ < δ. Then for any given y ∈ T (f ; ǫ
3 ),

we obtain the decomposition x
′

1 = x1 + y, x
′

2 = x2 + y,where ‖x1‖ ≤ r, ‖x2‖ ≤ r in view of
Theorem 3. Therefore it follows that

‖x1 − x2‖ = ‖(x
′

1 − y)− (x
′

2 − y)‖ = ‖x
′

1 − x
′

2‖ < δ.

and
D(f(x1) , f(x2)) <

ǫ

3
,∀ x1, x2 ∈ R

n, ‖x1‖ ≤ r, ‖x2‖ ≤ r

Now for any y ∈ T (f ; ǫ
3 ) and ∀ x

′

1, x
′

2 ∈ R
n such that ‖x

′

1 − x
′

2‖ < δ, we get

D(f(x
′

1), f(x
′

2)) = D(f(x1 + y), f(x2 + y))

= ‖f(x1 + y)− f(x2 + y)‖

≤ ‖f(x1 + y)− f(x1)‖+ ‖f(x1)− f(x2)‖+ ‖f(x2)− f(x2 + y)‖

= D(f(x1 + y), f(x1)) + D(f(x1), f(x2)) + D(f(x2 + y), f(x2))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

This proves that f is uniformly continuous over R
n.

(ii) Since fk(x) −→ f(x) uniformly over R
n as k −→ ∞ so for any ǫ > 0 we can find a

natural number k0 such that

∀ k ≥ k0 ⇒ D(fk(x), f(x)) <
ǫ

3

Since fk : R
n −→ X is almost periodic for k = 1, 2, 3, ..., so for already chosen ǫ > 0 we can

find a relatively dense set T (fk; ǫ
3 ) such that

D(fk(x + y), fk(x)) <
ǫ

3
,∀ y ∈ T (f ;

ǫ

3
),∀ x ∈ R

n, k = 1, 2, 3....

Now ∀ y ∈ T (fk; ǫ
3 ) and ∀x ∈ R

n, we have

D((x + y), f(x)) = ‖f(x + y)− f(x)‖

≤ ‖f(x + y)− fk(x + y)‖+ ‖fk(x + y)− fk(x)‖+ ‖fk(x)− f(x)‖

= D(f(x + y), fk(x + y)) + D(fk(x + y), fk(x)) + D(fk(x), f(x))

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

Hence for the relatively dense T (f ; ǫ) we have

D(f(x + y), f(x)) < ǫ,∀ y ∈ T (f ; ǫ),∀ x ∈ R
n

Thus f is proved to be almost periodic.
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Theorem 7. If f : R
n −→ X is B-almost periodic function then given any ǫ > 0 we can

find two positive numbers r = r(ǫ) and δ = δ(ǫ) such that any ball B(a; r) in R
n contains a

ball of radius δ which is contained in T (f ; ǫ).

Proof. Since f is almost periodic function therefore for any ǫ > 0 there exists relatively
dense set T (f ; ǫ

2 ) in R
n and the associated number R( ǫ

2 ) = R > 0 such that

B(x;R) ∩ T (f ;
ǫ

2
) 6= ∅, ∀x ∈ R

n

By the uniform continuity of f over R
n we can find δ( ǫ

2 ) = δ such that if h ∈ R
n and ‖h‖ < δ

then
D(f(x + h), f(x)) <

ǫ

2
, ∀x ∈ R

n

We shall now prove that r(ǫ) = R( ǫ
2 )+2δ( ǫ

2 ) and δ(ǫ) are our desired numbers. In fact given

a ∈ R
n, take z ∈ R

n with ‖z‖ = δ, then ∃ y ∈ T (f ; ǫ
2 ) ∩ B(z + a; R) and hence ‖y − a‖ ≤

R+ δ < r, so that y ∈ B(a; r). Furthermore, ∀ h ∈ R
n, ‖h‖ < δ, ‖y +h−a‖ ≤ R+ δ + δ = r,

hence y + h ∈ B(a; r). Therefore the whole ball B(y; δ) is contained in the ball B(a; r).
Finally, any vector in this ball belongs to T (f ; ǫ); this is because, if y + h with ‖h‖ ≤ δ is
such a vector then ∀ x ∈ R

n, we have

D(f(x + y + h), f(x)) = ‖f(x + y + h)− f(x)‖

≤ ‖f(x + y + h)− f(x + h)‖+ ‖f(y + h)− f(x)‖

= D(f(x + y + h), f(x + h)) + D(f(y + h), f(x))

<
ǫ

2
+

ǫ

2
= ǫ

where we have used the facts that y ∈ T (f ; ǫ
2 ), ‖h‖ < δ and the uniform continuity of f

over R
n. This proves the result.

Theorem 8. If f : R
n −→ X is B- almost periodic is, then the range{ f(x) : x ∈ R

n} of f
is relatively compact in X.

Proof. In complete metric spaces, the relatively compact sets coincides with totally bounded
sets, it is sufficient to show that the values of the functions can be embedded in a finite
number of spheres of radius 2ε. Since f : R

n −→ X is B-almost periodic therefore by
Theorem 2 for any ǫ > 0 we can find a relatively dense set T (f ; ǫ) such that for some
r = r(ǫ) > 0 we have R

n = ∪
y∈T (f ;ǫ)

B(y; r). Therefore for any x ∈ R
n, ∃ y ∈ T (f ; ǫ) such

that we have‖x − y‖ ≤ r. Let x
′

= x − y which implies that x = x
′

+ y where ‖x
′

‖ ≤ r,
y ∈ T (f ; ǫ). By the continuity of f, the set {f(x

′

) : x
′

∈ B(0; r)} is compact in X. But
in a p-Fréchet space,0 < p < 1, every compact set is totally bounded, therefore there exist
k elements f(x1), f(x2), ..., f(xk) in X where ‖xi‖ ≤ r, 1 ≤ i ≤ k such that for every
x

′

∈ B(0; r) we have

f(x
′

) ∈
k
∪

i=1
B(f(xi), ǫ)

Take now an arbitrary x
′

∈ B(0; r) ⊂ R
n and consider y ∈ T (f ; ǫ) then we have

D(f(x
′

+ y), f(x
′

)) < ǫ
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Choose xl among x1, x2, ..., xk such that

f(x
′

) ∈ B(f(xl), ǫ) =⇒ D(f(x
′

), f(xl)) ≤ ǫ, l = 1, 2, 3, ..., k

Now for any arbitrary x ∈ R
n we have

D(f(x), f(xl)) = ‖f(x)− f(xl)‖

= ‖f(x
′

+ y)− f(xl)‖

≤ ‖f(x
′

+ y)− f(x
′

)‖+ ‖f(x
′

)− f(xl)‖

= D(f(x
′

+ y), f(x
′

)) + D(f(x
′

), f(xl))

< 2ǫ

Therefore we have f(x) ∈ B(f(xl), 2ǫ), 1 ≤ l ≤ k. Since x is an arbitrary vector in R
n, we

conclude that

{f(x) : x ∈ R
n} ⊂

k
∪

i=1
B(f(xi), 2ǫ)

This completes the proof the theorem.

Remark 6. Let f : R
n −→ X be B-almost periodic and let us consider the sequence of

values (f(xk))k∈N. Denote A = {f(xk); k ∈ N} and take the closure A ⊂ f(Rn) ⊂ X, it
follows that A is compact, so A is sequentially compact too (since (X, D) is a metric space),
which by A ⊂ A implies that the sequence (f(xk))k∈N has convergent subsequence in X.

Theorem 9. If f : R
n −→ X is B-almost periodic and g : X −→ Y is continuous on

f(Rn), where X is p-Fréchet space and Y is a q-Fréchet space with metrics D and D
′

respectively, 0 < p, q < 1, (with q not necessarily equal to p), then h : R
n −→ Y , defined by

h(x) = g(f(x)), x ∈ R
n is B-almost periodic.

Proof. Since range f(Rn) of g is closed and bounded so it is compact subset of X and
any continuous function defined on a compact set is uniformly continuous. Therefore g :
f(Rn) −→ Y is uniformly continuous. Hence for given ǫ > 0 we can find δ(ǫ) > 0 such that

D
′

(g(x1), g(x2)) < ǫ, whenever ‖x1 − x2‖ < δ, ∀x1, x2 ∈ f(Rn)

Since f : R
n −→ X is B-almost periodic so for δ(ǫ) > 0 we can find a relatively dense set

T (f ; δ) such that
D(f(x + y), f(x)) < δ, ∀x ∈ R

n, y ∈ T (f ; δ)

It follows that
D

′

(h(x + y), h(x)) = D
′

(g(f(x + y)), g(f(x))) < ǫ

whenever
D(f(x + y), f(x)) < δ, ∀x ∈ R

n, y ∈ T (f ; δ)

This implies that T (f ; δ) ⊂ T (h; ǫ). That is we can find a relatively dense set T (h; ǫ) such
that

D
′

(h(x + y)), h(x)) < ǫ,∀x ∈ R
n, y ∈ T (h; ǫ)

Therefore h is proved to be B-almost periodic.
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Theorem 10. Let f : R
n −→ X be a B-almost periodic function. Then for every sequence

(xk)k in R
n, there exists a subsequence (x

′

k)k such that (f(x+x
′

k))k is uniformly convergent
over R

n.

Proof. Let (xk)k be a given sequence in R
n and consider the sequence (fxk

)k functions
fxk

: R
n −→ X defined by fxk

(x) = f(x + xk), 1 ≤ k < ∞. Let S = { ηk; k ∈ N }
be a countable dense set in R

n. Since the range {f(x) : x ∈ R
n} of f is relatively compact

therefore we can extract from (f(η1 + xk))k a convergent subsequence. Let (fx1,k)k be a
subsequence of the sequence (fxk

)k which is convergent at η1. We apply the same argument
to the sequence (fx1,k)k to choose a subsequence (fx2,k)k which converges at η2. We continue
the process, and consider the diagonal sequence (fxk,k)k which converges at each ηk in S.
Call this last sequence (f

x
′

k

)k. We shall prove that this last sequence is uniformly convergent

over R
n, that is, we shall prove that for every ǫ > 0, ∃ a natural number k0 = k0(ǫ) such

that
D(f(x + x

′

k), f(x + x
′

l)) < ǫ,∀ k, l ≥ k0,∀ x ∈ R
n

Since f uniformly continuous over R
n, therefore for already chosen ǫ > 0 we can find

δ = δ( ǫ
5 ) > 0, such that

‖x− x
′

‖ < δ =⇒ D(f(x), f(x
′

)) <
ǫ

5
,∀ x, x

′

∈ R
n (2)

Since B(0; r) is compact in R
n so we can suppose that B(0; r) is contained in the union of

finite number of υ balls (say) of radii smaller than δ and choose from each ball a point of S,
we obtain S0 = {ξ1, ξ2, ...ξυ}. Since S0 is finite set, (f

x
′

k

)k is uniformly convergent over S0 ;

therefore there exists a natural number k0 = k0(
ǫ
5 ) such that

D(f(ξi + x
′

k), f(ξi + x
′

l)) <
ǫ

5
,∀ i, 1 ≤ i ≤ ν and k, l ≥ k0 (3)

Let x ∈ R
n be arbitrary and y ∈ T (f ; ǫ

5 ) then D(f(x + y), f(x)) < ǫ
5 this is because of

B-almost periodicity of f . Let us choose ηi such that ‖x + y − ξi‖ < δ then from (2) we
have

D(f(x + y + x
′

k), f(ξi + x
′

k)) <
ǫ

5
,∀ k, 1 ≤ i ≤ ν (4)

Now ∀ k, l ≥ k0 and ∀ x ∈ R
n we have

D(f(x + x
′

k), f(x + x
′

l)) = ‖f(x + x
′

k)− f(x + x
′

l)‖

≤ ‖f(x + x
′

k)− f(x + x
′

k + y)‖

+ ‖f(x + x
′

k + y)− f(ξi + x
′

k)‖

+ ‖f(ξi + x
′

k)− f(ξi + x
′

l)‖

+ ‖f(ξi + x
′

l)− f(x + y + x
′

l)‖

+ ‖f(x + y + x
′

l)− f(x + x
′

l)‖

<
ǫ

5
+

ǫ

5
+

ǫ

5
+

ǫ

5
+

ǫ

5
= ǫ
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[By (3), (3) and almost periodicity of f ]. Which proves the uniform convergence of the
sequence (f(x + x

′

k))k over R
n.

Theorem 11. A function f : R
n −→ X is B-almost periodic if and only if for every sequence

(xk)k in R
n, there exists a subsequence (x

′

k)k such that (f(x+x
′

k))k is uniformly convergent
over R

n.

Proof. The condition is necessary by Theorem 10. We now prove that it is sufficient. Sup-
pose, by contradiction, that f is not B-almost periodic, so there exists an ǫ > 0 such that
for every real number r > 0, there exists a closed ball B(a; r) which contains no element
of T (f ; ǫ). Consider now an arbitrary vector x1 ∈ R

n and take r2 − ‖x1‖ > 0 so ∃ a ball
B(x2; r2) which is disjoint of T (f ; ǫ). Note that x2 −x1 ∈ B(x2; r2) hence x2 −x1 /∈ T (f ; ǫ).
Next take r3 > ‖x1‖+ ‖x2‖ and find a ball B(x3; r3) which is disjoint of T (f ; ǫ). Now both
the x3 −x1 and x2 −x3 belong to B(x3; r3) but x3 −x1, x2 −x3 /∈ T (f ; ǫ). Continuing this
procedure, we can find an infinite sequence (xk)k ⊂ R

n such that ∀ l,m ∈ N , l 6= m =⇒ xl

−xm /∈ T (f ; ǫ). It also follows that

D(f(x + xl − xm), f(x)) ≥ ǫ,∀ x ∈ R
n, ∀ l,m ∈ N, l 6= m

If we put y = x− xl we get

D(f(y + xl), f(y + xm)) ≥ ǫ, ∀ y ∈ R
n,∀ l,m ∈ N, l 6= m (5)

Suppose there exists a subsequence (x
′

k)k of (xk)k such that (f(x+x
′

k))k converges uniformly
over R

n. Then for already chosen ǫ > 0, there exists a natural number p0 = p0 (ǫ) such that

∀ l,m ≥ p0 ⇒ D(f(x + x
′

l), f(x + x
′

m)) < ǫ,∀ x ∈ R
n

This contradicts (5) and so the sufficiency of condition is established. Hence the theorem is
proved.

We also have the following interesting theorem

Theorem 12. Let f : R
n −→ X be a B-almost periodic function. Then for every sequence

(xk)k ⊂ R
n there exists a subsequence (x

′

k) such that for every ǫ > 0, the inequality

D(f(x + x
′

k), f(x + x
′

j)) < ǫ,∀x ∈ R
n,∀k, j ∈ N is satisfied.

Proof. Let ǫ > 0 then by the almost periodicity of f there exists a real number r = r(ǫ) > 0
such that every closed ball of radius r there exists y such that

D(f(x + y), f(x)) <
ǫ

3
,∀ x ∈ R

n

Consider now a given sequence (xk)k in R
n then by Theorem 3, xk ∈ R

n can be written
as xk = zk + yk, yk ∈ T (f ; ǫ

3 ) and ‖zk‖ ≤ r, for all k, where T (f ; ǫ
3 ) is relatively dense set

associated with f . Moreover, using the uniform continuity of f over R
n, we can find δ > 0

such that
‖x1 − x2‖ < 2δ ⇒ D(f(x1), f(x2)) <

ǫ

3
, ∀ x1, x2 ∈ R

n
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Note that zk ∈ B(0; r) for all k. Since B(0; r) is a closed and bounded subset of finite-
dimensional normed space R

n so it must be compact in R
n. Therefore the sequence (zk)k

has a convergent subsequence, say (zki
)i. Let lim

i−→∞
zki

= z, which shows that z ∈ B(0; r).

Now consider the subsequence (zki
)i ( we use the same notation ) with

‖zki
− z‖ < δ, i = 1, 2, 3....

and let (xki
)i be the corresponding subsequence of (xk)k with

xki
= zki

+ yki
, i = 1, 2, 3, ...

Let us now prove that
D(f(x + xki

), f(x + xkj
)) < ǫ

for all x ∈ R
n and for all i, j. Now

D(f(x + xki
), f(x + xkj

)) = D(f(x + yki
+ zki

), f(x + ykj
+ zkj

))

= ‖f(x + yki
+ zki

)− f(x + ykj
+ zkj

)‖

≤ ‖f(x + yki
+ zki

)− f(x + zki
)‖

+ ‖f(x + zki
)− f(x + zk

j
)‖

+ ‖f(x + zkj
)− f(x + ykj

+ zkj
)‖

= D(f(x + yki
+ zki

), f(x + zki
))

+ D(f(x + zki
), f(x + zk

j
))

+ D(f(x + zkj
), f(x + ykj

+ zkj
)) (6)

Since f is almost periodic and yki
, ykj

∈ T (f ; ǫ
3 ), x + zki

, x + zkj
∈ R

n, ∀ i, j ∈ N, therefore
we have

D(f(x + yki
+ zki

), f(x + zki
)) <

ǫ

3
and D(f(x + ykj

+ zkj
), f(x + zkj

)) <
ǫ

3

Also since f is uniformly continues and ‖(x + zki
) − (x + zkj

)‖ = ‖zki
− zkj

‖ = ‖zki
− z +

z − zkj
‖ ≤ ‖zki

− z‖+ ‖z − zkj
‖ < δ + δ = 2δ, therefore we have

D(f(x + zki
), f(x + zk

j
)) <

ǫ

3
,∀x ∈ R

n,∀ i, j ∈ N

Hence from (6) we get

D(f(x + xki
), f(x + xkj

)) <
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ ,∀x ∈ R

n,∀ i, j ∈ N

If we put xki
= x

′

i and xkj
= x

′

j , we get

D(f(x + x
′

k), f(x + x
′

j)) < ǫ,∀x ∈ R
n,∀k, j ∈ N

This completes the proof of the theorem.
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Definition 4. A function f : R
n −→ X is said to be normal if for any sequence (xk)k

⊂ R
n one can extract a subsequence (x

′

k) such that the sequence (f(x
′

k + x))k of translated
functions is convergent uniformly on R

n.

Remark 7. From Theorem 11 it is obvious that f is normal if and only if it is B-almost
periodic.

Corollary 1. (i) The sum f + g of two B-almost periodic functions f and g defined on
R

n with values in the p-Fréchet space X, with 0 < p < 1, is B-almost periodic function.

(ii) If f1; f2 : R
n −→ X are B-almost periodic, then the function F : R

n −→ X × X,
defined by F (x) = (f1(x), f2(x)), x ∈ R

n, is B-almost periodic.

Proof. (i) Let (xk)k be sequence in R
n. By almost periodicity of f and g there exists a

subsequence (x
′

k)k ⊂ (xk)k such that both (f(x + x
′

k))k and (g(x + x
′

k))k are uniformly

convergent in x ∈ R
n in view of Theorem 11. Consequently ((f + g)(x + x

′

k))k is also
uniformly convergent in x ∈ R

n. This completes the proof again by Theorem 11.
(ii) Let (xk)k be sequence in R

n. In view of Theorem 11 one can find a subsequence
(x

′

k)k ⊂ (xk)k such that both (f(x + x
′

k))k and (g(x + x
′

k))k are uniformly convergent in

x ∈ R
n. Thus (F (x + x

′

k))∞k=1 = ((f1(x + x
′

k), f2(x + x
′

k)))k is uniformly convergent in x ∈
R

n, which proves the almost periodicity of F .

Theorem 13. If f1; f2 : R
n −→ X are B-almost periodic, then ǫ > 0, there exist common

ǫ-translation numbers for f1 and f2

Proof. Let X be a p-Fréchet space with D(x, y) = ‖x − y‖, 0 < p < 1. Consider the
Cartesian product X ×X = X2 with ‖(x, y)‖X2 = ‖x‖ + ‖y‖, (x, y) ∈ X2 then obviously
it is a p-norm on X2. Endowed with the metric D : X2 ×X2 −→ R+ ∪ {0}, defined by

D((x1, y1), (x2, y2)) = ‖(x1, y1)− (x2, y2)‖X2

= ‖(x1 − x1, x2 − y2)‖X2

= ‖x1 − x2‖+ ‖y1 − y2‖

= D(x1, x2) + D(y1, y2), ∀ (x1, y1), (x2, y2) ∈ X ×X

X × X is a p-Fréchet space. As f1; f2 : R
n −→ X are B-almost periodic, therefore the

function F : R
n −→ X ×X, defined by F (x) = (f1(x), f2(x)), x ∈ R

n, is B-almost periodic
by Corollary (1). Let y be a ǫ-translation vector of F then we have

D(F (x + y), F (x)) < ǫ, ∀ x ∈ R
n

Since

D(F (x + y), F (x)) = D((f1(x + y), f2(x + y)), (f1(x), f2(x)))

= D((f1(x + y), f1(x)) + D((f2(x + y), f2(x)) < ǫ, ∀ x ∈ R
n

therefore we have

D((f1(x + y), f1(x)) < ǫ and D((f2(x + y), f2(x)) < ǫ,∀x ∈ R
n

This proves that f1and f2 have common ǫ-translation numbers and this completes the proof
of the theorem as well.
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Remark 8. Corollary (1) and Theorem (13) hold true even for k functions where k > 2.

In what follows we denote the set of all continuous and bounded functions from R
n −→ X

by Cb(R
n, X) and the set of all B-almost periodic functions from R

n −→ X by AP (X), where
X is a p-Fréchet space, 0 < p < 1, that is Cb(R

n, X) = {f : R
n −→ X; f is continuous and

bounded } and AP (X) = {f : R
n −→ X; f is B-almost periodic }.

Remark 9. If we define ‖f‖b = sup{‖f(x)‖;x ∈ R
n}, f ∈ Cb(R

n, X) then ‖f‖b < +∞.
Obviously ‖.‖b is a p-norm on the space Cb(R

n, X). Since (X, D) is a complete metric
space, it follows that Cb(R

n, X) becomes a complete metric space with respect to the metric
Db(f, g) = ‖f − g‖, that is (Cb(R

n, X), ‖.‖b) is a p-Fréchet space, 0 < p < 1. By Theorem
5 it follows that AP (X) ⊂ Cb(R

n, X), that is AP (X) is a linear subspace of Cb(R
n, X).

By Theorem 6 (ii) it also follows that AP (X) is closed linear subspace of the the space
Cb(R

n, X). Therefore (AP (X), Db) is a complete metric space and hence (AP (X), ‖.‖b)
turns out to be a p-Fréchet space, 0 < p < 1.

In what follows we consider the notion of Bochner’s transform. The Bochner’s transform
of a function f ∈ Cb(R

n, X) is denoted by B(f) = f̃ and is defined by f̃ : R
n −→ Cb(R

n, X),

f̃(s) ∈ Cb(R
n, X) and f̃(s)(x) = f(x + s) ∀ x ∈ R

n. The properties of Bochner’s transform
are given in the following theorem

Theorem 14. (i) ‖f̃(s)‖b = ‖f(. + s)‖b = ‖f̃(0)‖b, for all s ∈ R
n

(ii) ‖f̃(s+y)− f̃(s)‖b = sup{‖f(x+y)−f(x)‖;x ∈ R
n} = ‖f̃(s)− f̃(0)‖b, for all s, y ∈ R

n;

(iii) f is B-almost periodic iff f̃ is B-almost periodic, with the same set of ǫ-translation
numbers;

(iv) f̃ is B-almost periodic iff there exists a relatively dense sequence {xn;n ∈ N} such the

sequence {f̃(xn);n ∈ N} of functions, is relatively compact in (Cb(R
n, X), ‖.‖b);

(v) f̃ is B-almost periodic iff f̃(Rn) is relatively compact in (Cb(R
n, X), ‖.‖b);

(vi) (Bochner’s criterion) f is B-almost periodic iff f̃(Rn) is relatively compact in (Cb(R
n, X), ‖.‖b).

Proof. (i) Since ‖f‖b = sup{‖f(x)‖;x ∈ R
n}, therefore we have

‖f̃(s)‖b = sup{‖f̃(s)(x)‖;x ∈ R
n}

= sup{‖f(x + s)‖;x ∈ R
n}

= sup{‖f(y)‖; y ∈ R
n}

= sup{‖f(y + 0)‖; y ∈ R
n}

= sup{‖f(0)(y)‖; y ∈ R
n}

= ‖f̃(0)‖b, ∀ s ∈ R
n
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Also

‖f̃(. + s)‖b = sup{‖f̃(. + s)(x)‖;x ∈ R
n}

= sup{‖f(x + . + s)‖;x ∈ R
n}

= sup{‖f(y)‖; y ∈ R
n}

= sup{‖f(y)‖; y ∈ R
n}

= sup{‖f(y + 0)‖; y ∈ R
n}

= sup{‖f̃(0)(y)‖; y ∈ R
n}

= ‖f̃(0)‖b, ∀ s ∈ R
n

Hence it is proved that

‖f̃(s)‖b = ‖f(. + s)‖b = ‖f̃(0)‖b, ∀ s ∈ R
n

(ii) Again by using the definition of ‖.‖b we have

‖f̃(s + y)− f̃(s)‖b = sup{‖f̃(s + y)(x)− f(s)(x)‖;x ∈ R
n}

= sup{‖f(x + s + y)− f(x + s)‖;x ∈ R
n}

= sup{‖f(z + y)− f(z)‖; z ∈ R
n}

= sup{‖f(z + y)− f(0 + z)‖; z ∈ R
n}

= sup{‖f(y)(z)− f(0)(z)‖; z ∈ R
n}

= ‖f̃(y)− f̃(0)‖b ∀ y, s ∈ R
n

(iii) This is an immediate consequence of (ii)

(iv) If f̃(s) is almost periodic, it follows by Remark 6 that for every sequence (xk)k in

R
n, the set {f̃(xk) : k ∈ N} is relatively compact in (Cb(R

n, X), ‖.‖b). Conversely suppose

that there exists a relatively dense sequence (xk)k in R
n such that the set {f̃(xk) : k ∈ N} is

relatively compact in the complete metric space (Cb(R
n, X), ‖.‖b). This is equivalent with

the fact that {f̃(xk) : k ∈ N} is totally bounded in (Cb(R
n, X), ‖.‖b). Therefore due to

total boundedness of the set {f̃(xk) : k ∈ N} in Cb(R
n, X), it is possible to fined ν vectors

{x1,0, x2,0,...xν,0} in (xk)k such that f̃(xk) ∈
ν
∪

j=1
B(f̃(xj,0), ε), ∀ k = 1, 2, 3, .... We divide

the whole sequence {f̃(xk) : k ∈ N} into ν subsequences {f̃(xj,k) : k ∈ N}, j = 1, 2, 3, ..., ν,

where (xj,k)k ⊂ (xk)k is such that ‖f̃(xj,k)− f̃(xj,0)‖b < ε which by Theorem 14(ii) implies

that ‖f̃(xj,k − xj,0)− f̃(0)‖b < ε. It follows that yj,k = xj,k − xj,0 ∈ T (f̃ , ε). Now we show

that the set
ν
∪

j=1
{yj,k : k ∈ N} is relatively dense in R

n. Let r > 0 be such that any ball

B(x, r) in R
ncontains some xk. We say that in any ball B(x, r+r) ,where r = sup

1≤j≤ν

{‖xj,0‖},

contains some yj,k. In fact, in B(x, r) there is some xk which is an xj,k for some j and k.
Hence ‖xj,k − x‖ ≤ r and it follows that ‖xj,k − xj,0 − x‖ ≤ ‖xj,k − x‖ + ‖xj,0‖ ≤ r + r,

so that xj,k − xj,0 ∈ B(x, r + r). We note that the relatively dense set contained in T (f̃ , ε)
was obtained by taking differences of elements in (xk)k. Also assume that f ∈ Cb(R

n, X) is
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almost periodic then {f̃(x) : x ∈ R} is relatively compact and in particular {f̃(wk) : wk ∈
Z

n} is relatively compact sequence in Cb(R
n, X). It follows that, ∀ ε > 0, the set T (f, ε)

contains relatively dense set formed from the elements in Z
n. This proves the B-almost

periodicity of f̃ .
(v) The necessity follows from Theorem 8. The sufficiency is a direct consequence of (iv).
(vi) It is a consequence of (iii) and (v)

The following theorem is also sufficient criterion for almost periodicity.

Theorem 15. Let f ∈ Cb(R
n, X) and {f̃(xk) : k ∈ N} be a relatively compact sequence in

X for a relatively dense sequence (xk)k in R
n. Assume that

cD(f(x + xp), f(x + xq)) ≤ D(f(xp), f(xq)),∀ x ∈ R
n, ∀ p, q ∈ N

holds true for some c > 0. Then f is B-almost periodic.

Proof. From the inequality in the statement we have

D(f(xp), f(xq)) = ‖f(xp)− f(xq)‖

≥ c‖f(x + xp)− f(x + xq)‖

≥ c sup{‖f(x + xp)− f(x + xq)‖;x ∈ R
n}

= c sup{‖f̃(xp)(x)− f̃(xq)(x)‖; x ∈ R
n}

= cDb(f̃(xp), f̃(xq)),∀p, q ∈ N

Since the set {f(xk) : n ∈ N} is relatively compact, it has a convergent subsequence {f(x
′

k) :
n ∈ N} which is Cauchy sequence in the complete metric space (X, D), so it must be

convergent. It follows that {f̃(x
′

k) : n ∈ N} is a Cauchy sequence in (Cb(R
n, X), ‖.‖b). With

this together with Theorem 14, (iv), it follows that f̃(s) is B-almost periodic, which by
Theorem 14, (ii), implies that f is B-almost periodic.

This completes the proof of the theorem.

Corollary 2. Let the function f : R
n −→ X have relatively compact range and also assume

that
c sup{D(f(x + y), f(x)) : x ∈ R

n} ≤ inf{D(f(x + y), f(x)) : x ∈ R
n}

for some c > 0. Then f is B-almost periodic.

Proof. Let (xk)k be any relatively dense sequence in R
n then {f(xk) : n ∈ N} is relatively

compact. Moreover if y = xp − xq, from the given inequality we get

c sup{D(f(x + xp − xq), f(x)) : x ∈ R
n} ≤ inf{D(f(x + xp − xq), f(x)) : x ∈ R

n}

Take u = x− xq then

c sup{D(f(u + xp), f(u + xq)) : u ∈ R
n} ≤ inf{D(f(u + xp), f(u + xq)) : u ∈ R

n} (7)

≤ D(f(xp), f(xq))
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but

sup{D(f(u + xp), f(u + xq)) : u ∈ R
n} = sup{‖f(u + xp)− f(u + xq)‖ : u ∈ R

n}

= sup{‖f̃(xp)(u)− f̃(xq)(u)‖ : u ∈ R
n}

= ‖f̃(xp)− f̃(xq)‖b

= Db(f̃(xp), f̃(xq))

Therefore from (7) we have

cDb(f̃(xp), f̃(xq)) ≤ D(f(xp), f(xq)), ∀p, q ∈ N

From Theorem 15 the B-almost periodicity is proved.

Definition 5. Let f : R
n −→ X be an almost periodic function. A sequence (xk)k in R

n

is said to be regular with respect to f if the sequence of translates (f(x + xk))k is uniformly

convergent on R
n which is equivalent to the convergence of (f̃(xk))k in Cb(R

n, X).

Theorem 16. Let f : R
n −→ X be an almost periodic function and assume that for a

sequence (xk)k in R
n there exists the limit lim

k→∞
f(ηp + xk) = gp ∈ X for all elements in the

sequence (ηp)p which is dense in R
n then (xk)k is regular to f .

Proof. Suppose that (f̃(xk))k is not convergent then there exists ε0 > 0 and one may extract

sequences (pl)l and (ql)l from (p)p, such that ‖f̃(xpk
)− f̃(xqk

)‖ b ≥ ε0, k = 1, 2, 3.... As the

range of f̃ is relatively compact, we may assume that lim
k→∞

f̃(xpk
) = g̃1, lim

k→∞
f̃(xqk

) = g̃2,

where Db(g̃1, g̃2) ≥ ε0. Hence lim
k→∞

f(x+xpk
) = g1(x), lim

k→∞
f(x+xqk

) = g2(x) uniformly on

R
n. On the other hand we get lim

k→∞
f(ηj + xpk

) = g1(ηj) = gj = lim
k→∞

f(ηj + xqk
) = g2(ηj),

∀ j = 1, 2, 3, .... From the continuity of g1 and g2 and the density of (ηj)j in R
n we obtain

g1(x) = g2(x), ∀ x ∈ R
n a contradiction. This completes the proof.
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[17] N’Guérékata G.M., Almost Automorphic and Almost Periodic Functions in Absract
Spaces, (2001), Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht,
London, Moscow.
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