LIBERTAS MATHEMATICA, VOL. XI, 1991

A NOTE ON RELLICH TYPE INEQUALITY
B. G. Pachpatte

Abstract. In the present note an inequality of Rellich type involving
functions of several variables and their first and second order partial

derivatives is established.

1. INTRODUCTION

In [9] F. Rellich proved the following inequality

. n2(n-4)2 _
(1) s ax > S [ "o,

R" R"
where u is a function in Cj°(R™-{0}) which is not identically zero and n # 2

The inequalities of this type have significant applications in the theory
of partial differential equations. In [10] Schmincke established an extension
of (1) 1in exploring self-adjointness «criteria for Schrédinger operator.
Another extenmsion of (1) was proved by Allegretto [2] in dealing with elliptic
equations of order 2n. For other interesting extensions of (1), see the recent
papers by Lewis [6] and Bennett ([3]. The aim of the present note is to
establish an inequality of Rellich type which will allow for a broader range of
application. The analysis used in the proof is elcmentary and based on the

idea used by Schmincke [10] to obtain an extension of Rellich’s inequality.

2. BASIC INEQUALITY

Throughout we assume that H is an open, connected subset of R® that is

not necessarily bounded, and that the boundary of H, JH, is sufficiently smooth
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in order that the Green formulas applies. A point in R"™ is denoted by
% 1
. 2.2
x=(Xy,**, Xp) and its norm is given by |x| :(Z|xi| )".  We denote by CM(H)
i=1

the vector space consisting of all functions ¢ which, together with all their
partial derivative DY@ of orders |a| <m are continuous on H and denote by C5°(H)
the vector space of infinitely differentiable functions with compact support

(see, [1, p.9]).

In this section, we will prove an inequality that will be crucial in
proving our main result in the next section. This inequality is given in the

following theorem.

THEOREM 1. Let p>2 be a constant, gECZ(H), Ag#0 in H and urECgo(H).

r=1, -+, N be real valued functions. Then
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where V —(6x1’ . an) and A_iglaxﬁ . P

N p-!
2
Proof. By applying Green’s first formula to J’l_\gl{ZIUH } dx and
’ il el

using the definition sgn (Ag) = !igl we observe that
_P_ o
" p-1 . p-1
2 L 2
(3) jiAg\{Z\ur\ } dx = —sgn(Ag)j(VgW{Zzurl } dx
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By simple calculation it is easy to-see that

p P+l .
p— 2(p-1) 2

1
N N N
(4) IV{ZIurlz} Js(—pQ_pl){Zmrf} {Z|Vur|2}
r=1 r=1 r=1

2 2
Using (4) in (3) and applying the Hélder’s inequality with indices pfl s p—pl
we have
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If J|Ag| Z|ur| dx =0, then (2) is trivially tiue, otherwise we divide
i} r=1 =
p+1
2p
P
p—1
N 2
both sides of (5) by J-l.Ag| Z|ur| dx and raise both sides to the
H r=1
2p . . " ;
power -1 to get the inequality (2). The proof is complete.
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Remark 1. We note the inequality obtained in (2) is a variant of the

Friedrichs inequality given in [3, p.989]. By rewriting (5) as

P 1
p—-1 p—1
N 2 2p % N 2
©  [1aeld St acs(52)[| 12817
i r=1 i t=l
1
2
*% N 2 N 2
12l 1ol Dl ) XVl dx,
r=l r=1
and applying the Holder's inequality with indices p, 31 on the right side of

(6) and following the last arguments in the proof of Theorem 1 with suitable

modifications, we get the following Dubinskii type inequality (see, [4,p.168]):
p—1

N
) jmgl{Zmrﬁ} dx
i =t

_P
p—1 1 p 2(p-1)

<(52) ‘}j{ma“ﬁlwf—_—l{(glluaz)( 2\31| Vurﬁ)} dx .

—Qm(p— LS, and

Furthermore, by raising both sides of (2) and (7) to the power 5
. . . . . - 2m(p-1) 2m(p—1) ;
? /
applying the HSlder’s inequality with indices 5 * Bm(p-1y-2 suitably on

the right sides of the resulting inequalities we get r"spectively the following

Sobolev-Lieb-Thirring type inequalities (see, [5,7,8]):

2m(p—1)
P

N .
(8) J!Agr{Z[urﬁ} dx

i r=1
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4m 2m(p—1)
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2m(p—1)
~p
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where p>2, m>1 are constants and D(H) is the n-dimensional measure of H.

3. MAIN R.ESU'LT.

OQur main result is given in the following theorem.

109

THEOREM 2. Let p,g,u. be as defined in Thcorem 1. Then for

constants 6 >0, é¢>0,

— STT( N
(10) leg| T e’ {Duﬁ} dx
i r=1

any



110 Rellich Type Inequality

p
p+1 2p p—1
_(Tl) ST N , p
—be JIAgl | Vgl {ZIVUrI} dx
H r=1
B
2p N p—1
telroe——t 45l 2P lp-T J[A| > lupl dx
p-L {p-1 ® r=1 o ’

H

where V and A are as defined in Theorem 1.

Proof. Let A,B.C.D denote the integrals (without the exterior constants)

B
p—-1
N 2
in (10) successively. Applying Green’s second formula to JlAgl E]ur| dx
A i r=1
and using the definition sgn(Ag) = (3§| we observe that
_P
p—1
N 2
(11) D=sign(3g) [ 12814 Y luel dx
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By the simple partial differentiation we have the following identity
p 1

p-1 p-1

N ) 9 [ " N
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Using (12) in (11) and applying Schwarz inequality for sum we see that

p—-1
N

2p A 2
(13) Ds<m>j|g|{2|url } 2 lupl [Aup|dx
i r=1

r=1
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1

p—1
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r=1
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p—1
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Let I,, I,, I; denote the integrals (without the exterior constants) on the
right in (13) successively. From the definition of I, and applying Young’s
inequality with indices p, p%Pf’ Schwarz inequality first for sum and then

Schwarz inequality for integrals we observe that

CE
N, 1 N
a9y n=| |Ag|P{Ziur:} {|Ag| P|g|2|ur||Aur[}ix
] r=1 r=1
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H

2p p—1

By rewriting I, and applying Young’s inequality with indices p,

1

TR LN ]
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" __1 p—1( N
+(B5o)1agl P g {ZWu } b dx
Lo+ (B5= Lyg.

Rewriting I; and applying Hélder’s inequality with indices p,

p
=1

Rellich Type Inequality

_P_
- ve have

we have
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Now using (14)-(16) in (13) and applying the elementary inequality 2ab <a’+b?

a,b reals) and Young’s inequality with indices p, P_ e observe that
g L —

4 Lp-1
+—P2_ pPB P
(p-1)

-
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for e>0. Now for any §>0, from (2) we observe that

(=22

o =
(18) 6C—6(p“_p1) P=1p>o.
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Combining this fact with (17) we have

1
cr et (p-1)] 1 4 Tp-1
(19) Dg{ +—-(p_1)2 }D+€A+[2+(p_1) }B

b0 — 4

R Q_F’)
<p p—1
p_l) D’

for all ¢>0, 6§>0. Rewriting (19) we get the desired inequality in (10). The

proof of the theorem is complete.

Remark 2. We note that in the special cases, when (i) N=1, u; =u and

(ii) N=1, u;=u and p=2, the inequality (10) reduces to the inequalities

which we believe are new to the literature. If we specialize the inequality

(10) by taking N=1, u;=u and then by putting g= |x|a+2, a>0 real constant
2

and hence |Vg|2:(a+'2)2|'x]2a+“, Ag=(a+n)(a+2)|x|¥ we get an inequality

similar to that of inequality given by Bennett in [3. p. 992].
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