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1 Introduction

Let be some nonempty set; and ( ), some quasi-order (i.e.: reßexive and transi-
tive relation) over it. Further, let ` ( ) stand for a function from to + := [0 [.
Call the point , ( )-maximal when

and imply ( ) = ( ). (1 1)

A basic result involving such points is the 1976 Brezis-Browder ordering principle [6]:

Theorem BB. Suppose that

( ) is sequentially inductive:
each ascending sequence in has an upper bound

(1 2)

is ( )-decreasing ( = ( ) ( )). (1 3)

Then, for each there exists a ( )-maximal with .

This principle, including the well known Ekeland’s [7,8], found some useful appli-
cations to convex and nonconvex analysis; we refer to the quoted papers for a survey
of these. So, it cannot be surprising that, soon after its formulation, many extensions
of Theorem BB were proposed; see, for instance, Altman [2], Turinici [21], Anisiu [3] or
Kang and Park [14]. Here, we shall concentrate on the structural way of enlargement.
This, roughly speaking, consists of ( + ) being substituted by an ordered structure
( ) endowed with countable regularity properties for its chains. Some basic results in



16 MIHAI TURINICI

this area were obtained by Gajek and Zagrodny [10]; see also Zhu, Fan and Zhang [24]. It
is our aim in the following to show that a simpliÞcation of these facts is possible; details
will be given in Section 4 (the transitive case) and Section 5 (the amorph case). The
speciÞc tool for deducing these is a variant of the Zorn-Bourbaki maximality principle for
separable structures given in Section 3. All preliminary material involving such objects
is presented in Section 2. Further discussions about these questions will be performed
elsewhere.

2 Separable Ordered Sets

(A) Let stand for the class of ordinal numbers, introduced in a "factorial" way;
cf. Kuratowski and Mostowski [16, Ch 7, Sect 2]. Precisely, given a partially ordered
structure ( ), call it well ordered if each (nonempty) part of admits a Þrst element.
Given the couple ( ), ( ) of such objects, put

( ) ( ) i there exists a strictly increasing bijection: .

This is an equivalence relation; the order type of ( ) (denoted ord( )) is just its
equivalence class; also referred to as an ordinal.

Note that is not a set, as results from the Burali-Forti paradox; cf. Sierpinski
[19, Ch 14, Sect 2]. However, when one restricts to a Grothendieck universe G (taken as
in Hasse and Michler [11, Ch 1, Sect 2]) this contradictory character is removed for the
class (G) of all admissible (modulo G) ordinals (generated by (non-contradictory) well
ordered parts of G). In the following, we drop any reference to G, for simplicity. So, by
an ordinal in one actually means a G-admissible ordinal with respect to a "su ciently
large" Grothendieck universe G. Clearly,

=admissible ordinal and imply =admissible ordinal.

Hence, in the formulae

( ) = { ; } [ ] = { ; }

the symbol in the brackets is the "absolute" class of all ordinals.
Now, an enumeration of is realized via the immediate successor map of a subset

suc( ) = min{ ; } (hence suc( ) = + 1 ).

(Here, means: ). It begins with the natural numbers 0 1 ; the
set of all these is denoted by . Their immediate successor is = suc( ) (the Þrst
transÞnite ordinal); the next in this enumeration is + 1, and so on.

In parallel to this, we may (construct and) enumerate the class of all admissible
cardinals. Let and be nonempty sets; we put

¹ ( ) i there exists an injection (bijection): .

The former is a quasi-order; while the latter is an equivalence. Denote also

if and only if ¹ and ¬( ).
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This relation is irreßexive (¬( ), for each ) and transitive; hence a strict order.
Let 0 be an (admissible) ordinal; we say that it is an (admissible) cardinal if

( ) ( ), for each .

The class of all these will be denoted by . Now, the enumeration we are looking for is
realized via the immediate successor (in ) map

SUC( ) = min{ ; }

Precisely, this begins with the natural numbers 0 1 . The immediate successor (in )
of all these is = SUC( ) (the Þrst transÞnite cardinal). To describe the remaining
ones, we may introduce via transÞnite recursion the function ` from to as

0 = ; and, for each 0,
= SUC( 1), if 1 exists
= SUC{ ; }, if 1 does not exist.

Note that, in such a case, the order structure of ( ) = { ; } is completely
reducible to the one of ; further details may be found in Sierpinski [op. cit., Ch 15,
Sect 7].

Any nonempty part with ( ) ( ( )) is termed Þnite (e ectively
countable); the union of these ( ¹ ( )) is referred to as is countable. When
= ( ), all such properties will be transferred to .

Now, the immediate successor in of = 0 is = 1 (the Þrst uncountable
ordinal). The motivation of our convention comes from

is countable, for each ; but is not countable. (2 1)

A basic consequence of this is precised in the statement below (to be found, e.g., in
Alexandrov [1, Ch 3, Sect 4]):

Proposition 1. The following are valid:
i) The ordinal cannot be attained via sequential limits of countable ordinals. That

is: if ( ) is an ascending sequence of countable ordinals then

= sup( )(= lim( )) (2 2)

is countable too.
ii) Each second kind countable ordinal is attainable via such sequences. In other

words: if is of second kind then, there exists a strictly ascending sequence ( ) of
countable ordinals with the property (2.2).

(B) Let be a nonempty set; and ( ), some order (=antisymmetric quasi-order)
on it. By a ( )-chain of we shall mean any (nonempty) part of with ( ) being
well ordered (see above). Note that any such object may be written as = { ; },
where the net ` is strictly ascending ( = ); the uniquely determined
ordinal is just ord( ). Now, by the remark above

is countable ord( ) .
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If, moreover, ord( ) , we say that is normally countable. The following charac-
terization of this concept is almost immediate.

Proposition 2. The ( )-chain is normally countable if and only if

= { ; }, where ` is ascending ( = ). (2 3)

Let be nonempty parts with . We say that is majorized by (and
write ) provided

is coÞnal in ( with ).

The ( )-chain is called upper countable in case

, for some normally countable ( )-chain . (2 4)

Clearly, this happens if is normally countable. As a completion, we have

Proposition 3. The generic relation holds

( ( )-chain) countable = upper countable. (2 5)

Hence, the ( )-chain is upper countable if and only if

, for some countable ( )-chain . (2 6)

Proof. Let = { ( ); } be the representation of this ( )-chain where :=
ord( ) . If is a Þrst kind ordinal, we are done; because = { ( 1)} is then
coÞnal in . Assume now is a second kind ordinal. By Proposition 1 there exists a
strictly ascending sequence of ordinals ( ) with = sup( ). But then, = { ( );

} is a normally countable ( )-chain (of ) coÞnal in ; i.e., we are again done.

Remark. The reciprocal of (2.5) is not in general true; just take any ( )-chain of
with ord( )= Þrst kind ordinal.

(C) Let us now return to our initial setting. We say that the order structure ( )
is separable if (cf. Zhu, Fan and Zhang [24])

any ( )-chain of is upper countable. (2 7)

For example, this holds (under (2.5)) whenever

( ) is strongly separable: each ( )-chain of is countable. (2 8)

In fact, the reciprocal holds too; so that, we may formulate

Proposition 4. Under these conventions,

( ( )=ordered structure) separable strongly separable. (2 9)

Proof. Assume that ( ) is separable; and let = { ( ); } be some ( )-chain
of ; where := ord( ). If, by absurd, is not countable, we must have . The
initial segment (of ) = { ( ); } is not countable too; cf. (2.1). On the other
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hand, by hypothesis, is upper countable; so, there exists a strictly ascending sequence
( ; ) of ranks in ( ) with

{ ( ); }; hence = lim( ).

This, however, cannot be accepted, in view of Proposition 1. Hence, is countable; and
the proof is complete.

In the following, we shall give some useful examples of such structures.

c1) Let I( ) := {( ); } stand for the identical relation over . By an
almost uniformity (on ) we shall mean any family U of parts in × with

I( ) , for each U (i.e.: I( ) U).

Suppose that we Þxed such an object. Call the (ascending) net ( ; ), U-Cauchy,
when

U = ( ), such that = ( ) .

Likewise, call the (ascending) sequence ( ; ), U-asymptotic, in case

U = ( ), such that = ( +1) .

It is not hard to see that the global conditions below are equivalent

each ascending net is U-Cauchy (2 10)

each ascending sequence is U-asymptotic. (2 11)

By deÞnition, either of these will be referred to as U is (strongly) regular.

Lemma 1. Assume the almost uniformity U is (strongly) regular and

U is pseudo-metrizable: there exists a countable subfamily
V U , coÞnal in (U ) ( U V : )

(2 12)

U is su cient ( U = I( )). (2 13)

Then, ( ) is (strongly) separable.

Proof. Without loss, one may assume U itself is countable; for, otherwise, we simply
replace U by V. The case of U being Þnite is clear; so, it remains to discuss the alternative
of U being e ectively countable (U = ( ; )). Let be some ( )-chain in . If
there exists a last element = max( ), we are done; so, without loss, one may assume
that

for each there exists with . (2 14)

By the (strong) regularity of U , it is not hard to see that (cf. Turinici [22])

U , there exists = ( ) ( )
such that, for each : = ( ) .

[Here, for each and each relation ( ) over we put

( ) = { ; } (the -section of ( ) in )].
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This, in turn, yields an ascending sequence ( ; ) in with

(for each ) = ( ) . (2 15)

We claim that { ; }. In fact, if this were not true, ( ; ) admits an
upper bound ; and, by (2.14), there must be with (hence 6= ). But
then, (2.15) yields (via (2.13)) ( ) I( ); hence = , contradiction. This proves
our claim; and completes the argument.

In particular, let : × + be a pseudometric over (in the sense:
( ) = 0 ). Then, the family U( ) = { ; 0}, where

= {( ) × ; ( ) } 0

is a pseudo-metrizable almost uniformity over . In addition,

U is su cient i is su cient ( ( ) = 0 = = ).

A translation of Lemma 1 in terms of is immediate; we do not give details.

c2) By a topology over we mean, as usually, any family T { } of parts in
, invariant to arbitrary unions and Þnite intersections. Assume that we Þxed such an

object; and let "cl" stand for the associated closure operator. Any subfamily B T with
the property that each T is a union of members in B, will be referred to as a basis
for T . If, in addition, B is countable, then T will be called second countable. Finally,
term the ambient order ( ), closed from the left provided ( ) is closed, for each

.

Lemma 2. Assume that T is second countable and ( ) is closed from the left. Then,
( ) is (strongly) separable.

Proof. Let B = { ; } stand for a countable basis of T . Further, take some choice
function "Ch" of the nonempty parts in [Ch( ) , for each 6= ]. Given
the arbitrary Þxed ( )-chain of , denote = {Ch( ); B} (hence ).
For the moment, is countable (because ¹ B). In addition, we claim that cl( )
[wherefrom, is dense in ]. In fact, let be some point of ; and stand for an open
neighborhood of it. By the deÞnition of B, may be written as a union of members in
this family; so

3 (hence 3 Ch( )), for some B;

and our claim follows. If is coÞnal in , we are done (cf. Proposition 3). Otherwise,
there must be some with ( ); wherefrom

cl( ) cl( ( )) = ( );

i.e., { } is coÞnal in . The proof is thereby complete.

It remains now to establish under which conditions is T , second countable. An
appropriate answer is to be given in a metrizable context:

there exists a metric : × +

whose associated topology is just T .
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Then, e.g., the condition below yields the desired property for T :

has a countable dense subset (in the sense: cl( ) = ). (2 16)

The proof is to be found in Bourbaki [5, Ch 9, Sect 2.8]; see also Alexandrov [op. cit.,
Ch 4, Sect 4]. Some related aspects may be found in Zhu, Fan and Zhang [24].

c3) Let stand for the real axis. Denote by ( ) the usual order and metric. Take
any (nonempty) part of with

is bounded above ( , for some ). (2 17)

The structure ( ) fulÞlls conditions of both Lemma 1 (with respect to the uniformity
U( )) and Lemma 2 (with respect to the associated with topology); wherefrom, ( )
is (strongly) separable. A similar conclusion is valid for the dual order ( ). Precisely,
for each with

is bounded below ( , for some ), (2 18)

one has (by the same reasoning) that ( ) is (strongly) separable. This will be useful
for our future developments.

3 Zorn-Bourbaki Principles

(A) Let be a nonempty set; and ( ), some order (antisymmetric quasi-order) on
it. Call the point , ( )-maximal in case

= = ; i.e.: is false, for each . (3 1)

(Here, ( ) is the strict order attached to ( )). Su cient conditions for the existence of
such elements may be obtained as follows. Call the (nonempty) part of , a linear
( )-chain provided ( ) is linearly ordered [ : either or ]; and a
(natural) ( )-chain, when ( ) is well ordered [cf. Section 2].

Theorem ZB. Suppose that one of the conditions below holds

each linear ( )-chain (of ) is bounded above (3 2)

each ( )-chain (of ) is bounded above. (3 3)

Then, ( ) is a normal order, in the sense: for each there exists a ( )-maximal
with .

Some remarks are in order. The Þrst explicit formulation of Theorem ZB in terms of
(3.2) was given in 1914 by Hausdor [12, Ch 6, Sect 1]; a slight di erent version of it was
obtained in 1922 by Kuratowski [15]. Note that the quoted authors regarded Theorem
ZB only as a handy tool in solving various existence problems in the setting of (AC)(=
the Axiom of Choice). Finally, again under the lines of (3.2), we must mention the 1935
contribution due to Zorn [25]; who regarded Theorem ZB as an axiom. The version of
this result involving (3.3) was stated in Bourbaki [4]; who also established its equivalence
with the Well Ordering Principle in Zermelo [23] (equivalent with (AC)). For this reason,
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it is natural that Theorem ZB be referred to as the Zorn-Bourbaki principle. Note that,
in the context of (AC),

(3.3) = (3.2) (hence (3.3) (3.2));

see also Felgner [9]. Further historical aspects may be found in Moore [17, Ch 4, Sect 4]
and the references therein.

(B) Now, as results from the developments in Section 2, the veriÞcation of (3.3) for
countable chains only will su ce (for its validity) in many concrete cases with a practical
relevance. This suggests us considering maximality principles over (abstract) ordered
structures with such regularity properties. So, let ( ) be a (partially) ordered set.
Assume Þrstly that

( ) is sequentially inductive: each normally countable
( )-chain of is bounded from above (modulo ( )).

(3 4)

Note that, by Proposition 2, this notion is identical with the one of (1.2). Moreover, by
Proposition 3, it may be also written as

each countable ( )-chain of is bounded above (modulo ( )). (3 5)

Secondly, assume that (cf. Section 2)

( ) is (strongly) separable: each ( )-chain
is majorized by some countable ( )-chain .

(3 6)

Remember that, by Proposition 4, this also reads

each ( )-chain of is countable. (3 7)

Theorem 1. Assume that (3.4)+(3.6) hold. Then, ( ) is a normal order (in the sense
above).

Proof. By the remarks involving (3.5)+(3.7), it is clear that Theorem ZB applies to
these data; and, from this, we are done.

(C) Remember that, the regularity conditions in Theorem ZB are logically minimal
so that its conclusion be retainable. (See the quoted papers for details). So, it is natural
to ask whether this is also true for the conditions in Theorem 1. Two situations may
occur.

i) Assume that in Theorem 1 condition (3.4) does not hold. By deÞnition, there
exists a strictly ascending sequence = { ; } which is not bounded above in

. As a consequence, ( ) is not sequentially inductive; but it is (strongly) separable.
This, added to ( ) having no ( )-maximal elements, proves the logical minimality of
(3.4).

ii) Assume that, in Theorem 1, condition (3.6) does not hold. By deÞnition, there
must be a nonempty ( )-chain fulÞling (cf. Proposition 3)

is false, for each countable ( )-chain .
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As a consequence, the structure ( ) is sequentially inductive; but not (strongly) sep-
arable. This, added to ( ) having no ( )-maximal elements proves the logical mini-
mality of (3.6).

Summing up, we proved

Proposition 5. Either of the regularity conditions (3.4) and (3.6) in Theorem 1 is
logically minimal for the conclusions given there to hold.

4 Main Results

With these informations at hand, we may now return to the questions in Section 1.
The natural setting for discussing them is the one of transitive relations. This, apart from
giving us new useful forms of Theorem BB, allows a direct transition to the quasi-order
and amorph cases.

(A) Let ( ) and ( ) be transitive structures. The relation over

( ) i and ¬( ) (4 1)

is irreßexive (¬( ) ) and transitive; hence a strict order. As a consequence,
its completion

( ) i either or = (4 2)

is an order on . Denote in the same way the strict/standard order on attached to
( ). Further, let : be some ( )-increasing function

= ( ) ( ) [equivalently: ¬( ( ) ( )) = ¬( )]. (4 3)

This allows us introducing the relation (in )

( ) @ i and ¬( ( ) ( )). (4 4)

By the remark involving (4.3), one has

@ i and ( ) ( ); (4 5)

wherefrom, (@) is a strict order on . Let (v) stand for the associated (by (4.2)) order
in . Note that, by the very deÞnitions (and remarks) above

[( @ ) or ( @ )] imply @ . (4 6)

In fact, assume e.g. that the former of these alternatives holds. As @ = , one
gets for the moment . If, by absurd, ( ) ( ) then, combining with ( ) ( )
(deductible via (4.3) and ) gives ( ) ( ); in contradiction with @ . Hence,
¬( ( ) ( )); wherefrom, @ . The latter of these alternatives is handled in a similar
way; and the claim follows.

Having these precised, call the point , ( ; )-maximal, when

for each : implies ( ) ( ). (4 7)

Note that, if ( ) is identical with ( ), and ( ) is an order (on ) this concept
reduces to the one in Section 3 (when =identity). Hence, maximality results of this type
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are not without interest for us. The basic step in deducing these is a characterization of
our concept in terms of (v).

Lemma 3. The generic relation is available

( ): ( ; )-maximal (v)-maximal. (4 8)

Proof. It will su ce verifying that

is not ( ; )-maximal is not (v)-maximal.

The left part of this equivalence means

such that: ¬( ( ) ( )); hence @ .

And, from this, the claim follows.

Now, as (v) is an order, the developments of Section 3 apply to ( v); and this
yields the following maximality principle to be used further.

Theorem 2. Assume that

( v) is sequentially inductive (cf. (3.4)) (4 9)

( v) is (strongly) separable (cf. (3.6)). (4 10)

Then, for each there exists with

is ( ; )-maximal (cf. (4.7)) (4 11)

in such a way that

= (hence is ( ; )-maximal), whenever ( ) = (4 12)

, whenever ( ) 6= . (4 13)

Proof. By Theorem 1 (applicable, via (4.9)+(4.10)) it follows that, for each
there exists with

v (i.e.: either @ or = ); and is (v)-maximal. (4 14)

The latter of these yields (4.11), if one takes Lemma 3 into account. And the former of
these gives the couple of alternatives (4.12)/(4.13). In fact, ( ) = implies (4.12),
in view of [ @ = ]. Moreover, ( ) 6= gives (4.13); for, in such a case,
(4.14) holds with some 1 ( ) in place of . The proof is thereby complete.

It remains now to give su cient conditions (involving our initial data) under which
(4.9)+(4.10) be fulÞlled. This necessitates further conventions and auxiliary facts. Let
( ) be a sequence in ; we call it ascending (modulo ( )) when , for .
Also, let us say that is an upper bound (modulo ( )) of ( ) when

, for all (written as: ( ) ).

If is generic in this convention, we say that ( ) is bounded from above (modulo ( )).
Finally, we call ( ), sequentially inductive provided

each ascending (modulo ( )) sequence
is bounded from above (modulo ( )).
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The following auxiliary statement will be useful for us.

Lemma 4. Under these conventions, one has

( ) sequentially inductive = ( v) sequentially inductive. (4 15)

Proof. Assume that ( ) is sequentially inductive; and let be some normally
countable (v)-chain of . By deÞnition, it may be represented as a -net (with )
= { ; }; where ` is strictly ascending (modulo (v)). The case is

clear; so, without loss, one may assume = . By (4.4) (and the choice of ( ))

= @ = (4 16)

This sequence is therefore ascending (modulo ( )); wherefrom (by hypothesis) ( ) ,
for some . This, along with (4.6), gives (via (4.16)) ( ) @ ; hence ( ) v ; and
the conclusion follows.

We are now in position to get an appropriate answer to the posed question.

Theorem 3. Suppose that

( ) is sequentially inductive (4 17)

( ) is (strongly) separable. (4 18)

Then, conclusions of Theorem 2 are retainable.

Proof. By Lemma 4, condition (4.9) holds via (4.17). We claim that (4.10) holds too
(from (4.18)); and this will complete the argument. Let be some (v)-chain of ; and
put = ( ). Clearly,

is a ( )-chain in ; (cf. (4.5));

so, in view of (4.18), is countable (in ). On the other hand, the same relation
(4.5) shows that is an order isomorphism between ( v) and ( ); wherefrom, is
countable too; and the claim follows.

(B) In particular, assume that the (transitive) relation ( ) is a quasi-order ( ) in
both and . By Theorem 3 we then derive (under (4.3))

Theorem 4. Assume (4.18) is true, as well as

( ) is sequentially inductive (in the sense of (1.2)). (4 19)

Then, for each , there exists , with

[ ] and [ = ( ) ( )]. (4 20)

Note that, if ( ) is identical with ( + ), the regularity condition (4.18) holds (cf.
Section 2). In this case, Theorem 1 is nothing but the Brezis-Browder ordering principle
[6] (subsumed to Theorem BB). So, it is natural that Theorem 4 be also referred to in this
way. On the other hand, if ( ) is identical with ( ) and =the identity, Theorem
4 is just Theorem 1 (when ( ) is an order). Summing up, we get the logical implications

Th 1 = Th 3 = Th 4 = Th 1; (4 21)
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hence, all these are mutually equivalent. As a consequence of this, the Brezis-Browder
ordering principle (Theorem BB) is deductible from the "separable" version of the Zorn-
Bourbaki maximality principle (Theorem 1). The question of the reciprocal inclusion
being also true remains open; we conjecture that the answer is positive.

(C) Let us return to our initial framework. The basic hypothesis used in all these
developments is (4.3). So, the question arises of what can be said about such results
when (4.3) is no longer available. To this end, put

( ) 4 i and ( ) ( ). (4 22)

This is a transitive relation over ; and condition (4.3) holds with (4 ) in place of
( ). An application of Theorem 3 to these data yields an appropriate answer to the
problem we deal with.

Theorem 5. Assume that (4.18) holds, as well as

( 4) is sequentially inductive. (4 23)

Then, for each , there exists with

is (4 ; )-maximal (cf. (4.7)) (4 24)

in such a way that

= (hence is (4 ; )-maximal), whenever ( 4) = (4 25)

4 , whenever ( 4) 6= . (4 26)

A quasi-order version of this (under the lines of Theorem 4) is immediately obtain-
able; we do not give details. In particular, when ( ) is identical with ( + ), this
(quasi-order) statement covers a related one in Kada, Suzuki and Takahashi [13]. Further
aspects will be discussed in a separate paper.

5 Some Amorph Versions

A slight extension of these facts is to be reached when the relation ( ) over is no
longer transitive. Further aspects occasioned by the obtained results are then discussed.

(A) Let ( ) stand for an amorph relation over . Denote by ( ) the transitive
relation (over the same) attached to ( )

( ) i = 1 = (in the sense:

+1 {1 1}), for some 2 and 1 .
(5 1)

Take a transitive relation (4) over ; as well as a function : with

is ( 4)-increasing: = ( )4 ( ). (5 2)

Note that, under (5.1) above, one gets

is ( 4)-increasing (in the sense of (4.3)).
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Given , we say that it is ( 4; )-maximal, if

(for each ): = ( )4 ( ). (5 3)

Again by (5.1), one gets the generic relation

(for each ): ( 4; )-maximal = ( 4; )-maximal. (5 4)

So, existence results involving such points are deductible from Theorem 3 above. The
only aspect to be clariÞed is that of expressing (4.17) in terms of ( ). This will necessitate
a lot of new conventions. Let ( ) be a sequence in ; we term it ascending (modulo
( )) when

+1, for all ranks . (5 5)

Further, let us call , an asymptotic upper bound (modulo ( )) of ( ) (written as:
( ) ) provided

with ; or, equivalently:
there exists a subsequence ( = ( )) of ( ) with ( ) .

(5 6)

When is generic with such a property, we say that ( ) is asymptotic bounded above
(modulo ( )). Finally, call the structure ( ), sequentially inductive if

each ascending (modulo ( )) sequence
is asymptotic bounded above (modulo ( )).

(5 7)

The following auxiliary fact is useful for us.

Lemma 5. Under these conventions,

( ) sequentially inductive = ( ) sequentially inductive. (5 8)

Proof. Assume that ( ) is sequentially inductive; and let ( ) be an ascending
(modulo ( )) sequence in . By the very deÞnition (5.1) of ( ), there must be a
sequence ( ) in with

( )=ascending (modulo ( )); ( )=subsequence of ( ).

This, by the accepted hypothesis, yields

( ) (wherefrom ( ) ), for some ;

and the conclusion follows.

Now, by simply adding this to Theorem 3, one gets

Theorem 6. Assume (4.18) holds, as well as

( ) is sequentially inductive. (5 9)

Then, for each , there exists with

is ( 4; )-maximal (cf. (5.3)) (5 10)

in such a way that, either (4.13) is retainable, or else

= (hence is ( 4; )-maximal) whenever ( ) = . (5 11)
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(Here, ( ) is the transitive relation given by (5.1)).

In particular, when ( ) is a transitive relation over , this statement reduces to
Theorem 3. Since the opposite inclusion also holds, we get

Theorem 6 Theorem 3 ( Theorem 1). (5 12)

Hence, this extension is technical in nature.

(B) Now, the basic assumption used here is (5.2). So, we may ask of what happens
when such a condition is no longer true. To this end, put

( ) > i and ( )4 ( ). (5 13)

This is an amorph relation over ; and condition (5.2) holds with (> 4) in place of
( 4). An application of Theorem 6 to these data gives:

Theorem 7. Assume (4.18) holds, as well as

( >) is sequentially inductive. (5 14)

Then, for each there exists with

is (> 4; )-maximal (cf. (5.3)) (5 15)

in such a way that, either (4.13) is retainable, or else

= (hence is (> 4; )-maximal) whenever ( ) = . (5 16)

(Here, (>) is the amorph relation of (5.13); and ( ), its associated by (5.1) transitive
relation).

(C) The following completion of these is to be made. Let ( ¹) be a well ordered
structure with ; we say that it is a chain subordinated to ( ), when

¹ 6= imply (5 17)

The initial structure ( 4) will be termed countably orderable provided

for any chain ( ¹) subordinated to ( ),
the support set is countable.

(5 18)

It is not hard to see that the regularity condition

( ) is countably orderable (5 19)

is a particular case of (4.18). Hence, the following Brezis-Browder type statement is
deductible from Theorem 7 above.

Theorem 8. Assume that (5.14) is true, as well as (5.19). Then, conclusions of Theorem
7 are retainable.

This result was obtained in 1992 by Gajek and Zagrodny [10]. The argument de-
veloped there - based essentially on the maximal principle in H. Rubin and J. E. Rubin
[18, Sect 4] - is rather involved. Hence, the proposed (via Theorem 7) argument for this
may be viewed as a simpliÞcation of the original one. Further aspects were delineated in
Sonntag and Zalinescu [20].
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