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Abstract. In this paper we present numerical implementation of a new varia-
tional approach to non-rigid registration of images. Our method is based on ad-
justing divergence and curl of image displacement field, which determines pixel
correspondences. An image registration procedure might be decomposed into
three major components: the problem statement, the registration paradigm and
the optimization procedure. Our method minimizes a similarity metric such as
the sum of squared differences and uses Lagrange multipliers method to solve
the optimization problem governed by the divergence and curl equations. In
our implementation, the minimization problem is reduced to solving Poisson
equations. A finite-difference multigrid strategy is used to solve these Poisson
equations. Computational experiments demonstrate the promising potential of
our registration method.
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1 Introduction

Non-linear image registration is a highly nonlinear process of establishing pixel-by-pixel cor-
respondences between two (or more) “similar” images. The images could be of the same or
different objects and imaging modalities. They can possibly be taken at different distances,
angles and times. In fact, image registration can be described as finding a spatial transfor-
mation between pixels (or voxels) of two images that maximizes a similarity measure called
the data term between the two images.

In general the image registration problem is an ill-posed optimization problem. A large
class of current variational techniques can be formulated as an regularized optimization
problem:

J [R,T;u] := min {Csim + βCreg}, (1.1)

where Csim is the similarity metric between template and reference images, T and R, respec-
tively; and Creg is a regularizing term; β is a weighting parameter. Typical regularization
terms are fluid-like, elastic, diffusive, or curvature-based smoothers. Let us note that adding
a regularization term may affect the quality of the registration in a negative manner. Some
drawbacks by adding a regularization term to the cost functional are: (i) The resulting
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transformations depend on the nature of the regularizing term, which may impose unrealis-
tic physical properties. (ii) If the regularity constant β is too small, the regularity will not
be strong enough and the algorithm will be unstable. (iii) If β is too large, the regularity
will be too strong and the resulting transformations will not optimize the similarity measure
accurately.

We can desribe the image registration problem as an algorithm that consists of three
components:

• Transformation models: Rigid (affine, global), non-rigid (non-linear and local),
hybrid.

• Similarity measures: Intensity-based, features-based.

• Optimization methods: Lagrange multipliers method.

An image registration is called rigid, if only rotations, translations, projections, scaling
are envolved. In the literature rigid transformations have found application areas in ortho-
pedic imaging because of the rigid-transformations do not consider soft tissue deformations.
Bone growth can be given as a specific example for rigid image registration. If the image
transformation maps lines onto curves, it is called non-rigid. Non-rigid image registration
is an essential tool required for overcoming, for example, soft tissue deformations in medi-
cal images. Non-rigid registrations are mostly local and are not linear, so they can not be
represented by means of matrices. The most well-known non-rigid image registrations types
are the elastic model proposed by [2], diffusion image registration [15], viscous fluid model
proposed by Christensen [3], and curverture based image registration [4]. Let us note that
our method can handle certain amount of deformation in 2D images by divergence and curl
which makes our method non-rigid.

Detecting tumors, locating diseased areas, image fusion, feature matching and motion
tracking are some of the important applications of the image registration problem. Image
registration is an important and challenging subject which usually involves high storage re-
quirements, high CPU costs, finding reliable similarity measures, noisy and distorted data in
medical images, occlusion and “ill-posed” optimization problems. Therefore finding reliable
image registration techniques are significant subject of image processing. Unfortunately, no
general theory for image registration has been yet established.

Landmark-based registration, Cross-correlation, thin plate spline interpolation, sum of
squared differences, mutual information, segmentation-based registration [6] are some of the
popular image registration techniques. It appears that each application has developed its
own approaches and implementation depending on the particular application.

[9] presented a method of diffeomorphic image registration using the method of discrete
mechamics and optimal control.

[14] presented a multi-start multi-resolution parallel registration algorithm for accurate
alignment of BSEM (Back-Scattered Scanning Electron Microscopy) and micro-CT image
pairs.

In this paper we continue investigation of a new image registration method proposed in
[11]. The sum of squared differences (SSD) is employed as the similarity measure in the cost
minimization of the existing registration framework.

We use Lagrange multipliers method to derive an optimality system which consists of
state equations, costate equations, and optimality conditions.
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We apply these techniques to several computational examples. Our results show that
the method is very promising.

In [11], a least square finite element method is used to solve the optimality system, but no
medical image examples are demonstrated. In this paper, a simpler finite difference method
with multigrid Poisson solver is used, and real medical images from the Visible Human
Project [1] are registered.

Some merits of our method are listed as follows:

• It is based on a solid mathematical foundation [11, 12]. In particular, it accounts for
local volume changes through the divergence of the transformation; and it accounts
for local rotation through the curl vector of the transformation.

• The method is based on a linear differential system; its numerical implementation is
fast, stable and simple.

• The method is general in the sense that it may be used in any optimization problem
that involves motion estimation. Thus, it has the potential to be the numerical kernel
for a wide range of applications.

This paper is organized as follows. In the first section we overview the ideas and method-
ology behind the image registration. In Section 2 we present our method to non-rigid regis-
tration of 2D images. We express the image registration problem as an optimization problem
and use the sum of squared difference as the similarity metric. Using Lagrange multipliers
method we obtain the optimality system which consists of state, co-state equations and
optimality conditions. From the optimality system we get four Poisson equations in the
same section. In Section 3 we describe an iterative numerical scheme for the solution of
these Poisson equations. Computational examples are reported in Section 4. Summary and
conclusion are presented in the last section.

2 Our Method for 2D Image Registration

Given a reference image R(x) and a template image T(x), we define the image registration
problem as an optimization problem: find a mapping φ(x) that minimizes the L2-norm
of the difference between T

(
φ(x)

)
and R(x) over Ω. Figure 1 contains an example for a

reference and template image. It is seen in Figure 1 that the image on the right hand side
is bigger than the one on the left hand side and the one on the right hand side is rotated
clockwise with a certain angle. In our image registration method we use divergence and curl
to model the free-form deformation between the images. We define the image registration
deformation by

φ(x) = x+ u(x) = (φ1(x), φ2(x)) = (x1 + u1(x), x2 + u2(x))

where u(x) = (u1(x), u2(x)) is the displacement field and x = (x1, x2) ∈ R2. Let us define
Jacobian determinant of the image registration mapping φ(x) as f(x). Following theorem
establishes a relationship between the image registration map φ(x) = x+ u(x) and f(x).

Theorem 1 Let Ω ⊂ R2 be a domain. For φ(x) = x + εu(x), the equality J(φ)(x) ∼=
1+div (εu(x))+O(ε2) holds for every ε > 0 in Ω where J(φ)(x) is the Jacobian determinant
of φ(x).
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Proof.
J(φ)(x) =

∣∣∣∣
1 + εu1x1

(x) εu1x2
(x)

εu2x1
(x) 1 + εu2x2

(x)

∣∣∣∣ = 1 + div (εu(x)) +O(ε2)

from which we obtain
div u(x) = f(x)− 1

by ignoring the ε2 terms and denoting εu by u.

Next we present our optimal control approach to the non-rigid registration of 2D images.
We want to minimize the cost functional

J (φ, f,g) =
1

2

∫

Ω

∣∣T
(
φ(x)

)
−R(x)

∣∣2 dx (2.2)

subject to

div u(x) = f(x)− 1 on Ω (2.3)

curl u(x) = g(x) on Ω

u(x) = 0 on ∂Ω,

where u(x) is the displacement between pixels in template and reference images and ∂Ω
is the boundary of Ω, and f(x) and g(x) are control functions to be determined by the
optimization procedure. f(x) is related to the Jacobian determinant and is chosen as 1
initially. g(x) is related to the curl of the displacement field and is chosen as 0 initially.

Though in (2.2), wi, i = 1, 2, are penalty weights, this does not mean that we are using
a regularization term. These penalty weights are used only to control the image nodes in
the domain of interest during the movement of pixels.

Note:

1. The constraint (2.3) is a linearized version of the moving grid deformation method
[13].

2. In [10], another simplified version of the deformation method is used as constraint.

Implementation 1 We use the Lagrange multiplier method to transform the constrained
minimization problem into an unconstrained saddle point problem. To this end, we introduce
the Lagrange multipliers v1(x) and v2(x) and define the Lagrangian functional

L(φ, f,g) =
1

2

∫

Ω

∣∣T
(
φ(x)

)
−R(x)

∣∣2 dx+
w1

2

∫

Ω

|f(x)|
2
dx

+
w2

2

∫

Ω

|g(x)|
2
dx+

∫

Ω

v1(x)(div u(x)− f(x) + 1)dx

+

∫

Ω

v2(x)(curl u(x)− g(x))dx

Solution of the Lagrange functional satisfies the optimality system which consists of
state equations, costate equations, and the optimality conditions. The constraint (2.3) is
explicitly substituted into (2.2) and the state and co-state functions are required to satisfy
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u = 0 and v = 0, respectively. Saddle points of Lagrangian functional satisfy an optimality
system that consists of state equations, co-state equations, and optimality conditions; the
optimality system is obtained from the first-order necessary conditions for the stationarity
of L.

Specializing an abstract theorem concerning the existence of Lagrange multipliers for
minimizations on Banach space [16], we obtain the following theorem:

Theorem 2 Let V1 and V2 be two Hilbert spaces, F a functional on V1, and G a mapping
from V1 to V2. Assume û is a solution of the following constrained minimization problem:

Find u ∈ V1 that minimizes F(u) subject to G(u) = 0. Assume further that the following
conditions are satisfied:

(i) F : Nbhd(û) ⊂ V1 → R is Frechet-differentiable at û;

(ii) G is continuously Frechet-differentiable at û;

(iii) G′(û) : V1 → V2 is onto.

Then, there exists a µ ∈ (V2)
∗ such that

F ′(û)v − 〈µ,G′(û)v〉 = 0, ∀v ∈ V1.

Proof. See [16], Theorem 43.19. Here, 〈·, ·〉 denotes the duality pairing between V2 and
(V2)

∗ and F ′(û)v and G′(û)v denote the actions of F ′(û) as an operator mapping v ∈ V1

into R and G′(û) as an operator mapping v ∈ V1 into V2, respectively.

We will fit our optimization problem into the above abstract framework. A related work
for the use of Lagrange multiplier method and the existence of solutions of the optimality
system can be seen at [5] for a similar optimal control problem. Next we obtain optimality
system which consists of state, co-state equations and optimality conditions.

State Equations: The state equations are obtained from Lv1 = 0, Lv2 = 0, where Lvi

represent the Fréchet derivative of L with respect to vi for i = 1, 2.

Lv1 =
d

dε

∣∣∣
ε=0
L[v1 + εδv1] =

d

dε

∣∣∣
ε=0

∫

Ω

(v1 + εδv1)(div u− f + 1)

=

∫

Ω

δv1(div u− f + 1) = 0 for every δv1.

Then, the first state equation is

div u(x) = f(x)− 1. (2.4)

In the similar way, by solving the equation Lv2
= 0 we obtain the second state equation as

curl u(x) = g(x). (2.5)

Costate Equations: The costate equations are obtained by solving the equations Lu1
=

0, Lu2
= 0.
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Lu1
=

d

dε

∣∣∣
ε=0

[1
2

∫

Ω

[T(x+ (u1(x) + εδu1(x), u2(x)))−R(x)]2

+

∫

Ω

v1(div (u1 + εδu1, u2)− f + 1) +

∫

Ω

v2(curl (u1 + εδu1, u2)− g)
]

=

∫

Ω

(T(x+ u(x))−R(x))Tφ1
δu1 +

∫

Ω

v1(δu1)x1
+

∫

Ω

v2(−δu1)x2

=

∫

Ω

(T(x+ u(x))−R(x))Tφ1
δu1 +

∫

Ω

(v1,−v2) · ∇δu1

=

∫

Ω

[(T−R)Tφ1
δu1 −∇ · (v1,−v2)δu1] (by Gauss theorem)

=

∫

Ω

[(T−R)Tφ1
−∇ · (v1,−v2)] δu1 = 0 for every δu1,

which gives us the first costate equation

∇ · (v1,−v2) = (T−R)Tφ1
. (2.6)

In the similar manner, from the equation Lu2
= 0 we obtain the second costate equation as

∇ · (v2, v1) = (T−R)Tφ2
. (2.7)

Optimality conditions: The optimality conditions are obtained by solving the equations
Lf = 0, Lg = 0.

Lf =
d

dε

∣∣∣
ε=0

[
w1

2

∫

Ω

(f + εδf)2 +

∫

Ω

v1(div u− (f + εδf) + 1)

]

=

∫

Ω

w1 fδf − v1δf

=

∫

Ω

(w1 f − v1)δf = 0 for every δf,

which gives us the first optimality condition

w1 f = v1. (2.8)

By solving Lg = 0 we get the second optimality condition as

w2 g = v2. (2.9)

In order to solve these system of equations we write a coupling system and then solve the
resulting Poisson equations by an iterative way in a decoupled manner. Define G := (G1, G2)
as

G1 := (T−R)Tφ1
,

G2 := (T−R)Tφ2
.

Then, we write the costate equations (2.6) and (2.7) as

∇ · (v1,−v2) = v1x1
− v2x2

= G1,

∇ · (v2, v1) = v2x1
+ v1x2

= G2.



AN INNOVATIVE METHOD FOR NON-LINEAR IMAGE REGISTRATION 141

By taking the appropriate derivatives of both of sides of last system of equations we obtain
the Poisson equations

∆v1 = G1x1
+G2x2

, (2.10)

∆v2 = G2x1
−G1x2

. (2.11)

In the similar way, using the state equations (2.4), (2.5) and the optimality conditions
w1 f = v1 and w2 g = v2 and defining F1 := f − 1, F2 := g, we obtain

∆u1 = F1x1
− F2x2

=
v1x1

w1

−
v2x2

w2

, (2.12)

∆u2 = F1x2
+ F2x1

=
v1x2

w1

+
v2x1

w2

. (2.13)

In the next section we solve these systems of Poisson equations in a decoupled manner with
an iterative way. Let us note that we chose w1 = w2 = 200 in the numerical implementation
of the program at Fortran language.

3 Numerical Implementation

Although there are a few sophisticated methods to solve this type of system of equations
numerically, we use finite-difference multigrid method. We first solve the above Poisson
equations sequentially and then update the control variables along with the gradients pro-
vided by the optimality condition. The computational algorithm for the solution of this
coupling system is given as follows:

• Suppose that at the kth step, we have found fk and gk.

• Obtain uk = (uk
1 , u

k
2) from the decoupled state equations (2.12) and (2.13).

• Obtain vk1 , v
k
2 from the decoupled costate equations (2.10) and (2.11).

• Next get new controls (fk+1, gk+1) from the optimality conditions, (2.8), (2.9).

• Normalize controls and repeat the same process until the error condition is satisfied
or a present number of iterations is achieved.

4 Computational Examples

4.1 Image Registration Quality Assessment Metrics

Referring to [7], we apply the following quality assessment metrics for our examples.

Sum of Squared Difference (SSD) Given reference image R, template image T , and
nodal coordination ξ, SSD is defined as

SSD =
1

‖T‖

∑

ξ∈Ω

(R(ξ)− T (φ(ξ)))2,

which quantifies the difference between the registered template image T and reference image
R, where ‖T‖ is the total number of pixels in T and φ is a transformation function.



142 M.AKINLAR, M.CHU, Y.GONG, S.HSIAO, C.HSIEH, G. LIAO AND S. SALAKO

Warping Index Mean warping index [8],

ω̄ =
1

‖T‖

∑

ξ∈Ω

‖φ(ξ)− φ∗(ξ)‖,

is used as the registration quality metrics, where φ is the deformation field obtained after
the image registration, φ∗ is the ground truth of the deformation field, ξ is the coordinate
of a nodal position, T is the template image, and ‖φ(ξ)−φ∗(ξ)‖ is the Euclidean’s distance
between φ(ξ) and φ∗(ξ).

Mean warping index is an appropriate metric to assess the overall quality of the regis-
tration result if the ground truth deformation field is available.

Masked Warping Index To properly reflect the quality of the image registration results,
we need to exclude the homogeneous background area in the reference image R by imposing
a binary mask in the process of computing the warping index.

Therefore, the masked mean warping index ω̄∗ is introduced here as

ω̄∗ =
1

‖Ω∗‖

∑

ξ∈Ω∗

‖φ(ξ)− φ∗(ξ)‖. (4.12)

4.2 Example 1: Synthetic Images of Elliptical Shape

The following example is implemented by the Lagrange Multiplier’s method.

Example 1: The example is adopted from [17] which used a free form deformation registra-
tion method to register two disks of very different radius. Large deformation is a character
of cardiac images.

Let reference image, R(x, y) and the template image, T (x, y) be given on the domain
Ω = [0, 1]× [0, 1] as follows:

R(x, y) =





10, d(x, y) ≤ 0;
9.5 + 5(0.1 + 1.5d(x, y)), 0 ≤ d(x, y) ≤ 2;
25, 2 ≤ d(x, y).

where
d(x, y) =

√
1.6(x− 30)2 + (y − 30)2 − 12.

T (x, y) =





10, d(x, y) ≤ 0;
9.5 + 5(0.1 + 3d(x, y)), 0 ≤ d(x, y) ≤ 1;
25, 1 ≤ d(x, y).

where
d(x, y) =

√
(x− 35)2 + 1.5(y − 35)2 − 7.

We used discrete images which have a resolution of 64 × 64 pixels. Figure 1 contains
reference and template images and Figure 2 illustrates movement of the reference image
towards the template image. The picture at the right bottom of the Figure 2 shows that
iterated reference image is really close to the template image at the end of 230 iterations.
Table 1 tells us the SSD is close to an optimal value at the end of 230 iterations, which is
one of the achievements of our method.
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Table 1: SSD and duration of implementation
Iterations SSD with MG MG Duration

1 1674.6 1 sec
2 908.5 1.1 sec
20 40.7 7 sec
120 6.4 38 sec
230 2.9 55 sec

Figure 1: Reference and template images (left and right, respectively)

4.3 Example 2: Images Based on the Visible Human Project

4.3.1 Lagrange Multipler Method

The template image T is taken from the Visible Human Project [1]. The reference image is
then formed by applying the known transformation (the ground truth shown in Fig. 3(e))
to the template image.

The initial SSD is 1047.65. After convergence, SSD is down to 14.8% of the initial SSD.
Fig. 3(f) shows the mask used to evaluate the masked mean/max warping index based

on the segmentation of reference image R. The initial masked mean warping index is 0.6228,
after registration, the masked mean warping index becomes 0.2386.

5 Summary and Conclusion

Nonrigid image registration is a significant branch of the image processing concept. It has
broad application areas in medical and non-medical imaging. For instance, it can be used
in analyzing local anatomical variations that exist between images acquired from different
individuals or atlases. It can serve as a powerful tool for combining information from multiple
sources, monitoring changes in an individual, detect tumors and locate disease, motion
correction.

In this article we have presented a systematic method for the non-rigid registration of
2D images. The Lagrange multipliers method was used to solve the optimization problem.
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Figure 2: Movement of template image towards reference image

Table 2: Lagrange Multiplier Example 2 Result
Iterations SSD percentage

initial 1047.65 100%
1 924.38 88.2%
2 900.20 85.9%
20 787.45 75.1%

1000 155.55 14.8%

We solved the Poisson equations appearing in the optimality system by means of multigrid
method. We applied our method to some 2D images. The method has also been extended
to 3D images, the results will be reported in a different paper.

We implemented our algorithms in Fortran language. Computational examples given
in the previous section were used to test the algorithms. Image registration experiments
demonstrate the accuracy and efficiency of our registration techniques.
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(a) Reference image. (b) Template image.

(c) Registered grid. (d) Registered template image.

(e) Ground truth grid. (f) Mask.

Figure 3: An example of registering a template image to reference image using Lagrange
Multiplier method.
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