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DOES THE QUADRATIC EQUATION HAVE GREEK ROOTS?
A STUDY OF "GEOMETRIC ALGEBRA", "APPLICATION
OF AREAS", AND RELATED PROBLEMS

Sabetai Unguru and David E. Rowe*

"Pe unde iese cuvintul iese si sufletul."
Romanian proverb!

"[1,'Abbé de Condillac] ... établit que nous ne pensons q'avec le
secours des mots; que les langues sont de véritables méthodes
analytiques; que l'algébre la plus simple, la plus exacte et la
mieux adaptée & son objet de toutes les maniéres de s'énoncer est
3-la-fois une langue et une méthode analytique; enfin que l'art de
raisonner se réduit a une langue bien faite ... Le mot doit faire
naitre 1'idée; 1'idée doit peindre le fait: ce sont trois empre-
intes d'un meme cachet; et comme ce sont les mots qui conservent
les idées et qui les transmettent, il en résulte qu'on ne peut
perfectionner le langage sans perfectionner la science, ni la
science sans le langage, et que quelque certains que fussent les
faits, quelque justes que fussent les idées qu'ils auroient fait
naitre, ils ne transmettroient . encore que des impressions fausses,
si nous n'avions pas des expressions exactes pour les rendre."

A. L. Lavoisier

... every language-act has a temporal determinant. No semantic
form is timeless. When using a word we wake into resonance ... its
entire previous history. A text is embedded in specific historical
time; it has ... a diachronic structure. To read fully is to
restore all that one can of the immediacies of value and intent in
which speech actually occurs."

"No safety-wire in the publicly available grammar stops us from
talking nonsense correctly."

"This insinuation of self into otherness is the final secret of
the translator's craft."

George Steiner3

"Die Sprache ist das bildende Organ des Gedankens."
Wilhelm von Humboldt"
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"A translator is to be like his author, it is not his business to
excel him." 3
Dr. Johnson® i

"Error is never so difficult to be destroyed as when it has its
root in Language."
Bentham®

"A good interpretation of anything — a poem, a person, a history, a
ritual, an institution, a society — takes us into the heart of that
of which it is the interpretation. When it does not do that, but
leads us instead somewhere else — into an admiration of its own
elegance, of its author's cleverness, or of the beauties of Eucli-
dean order — it may have its intrinsic charms; but it is something
else than what the task at hand ... calls for."

Clifford Geertz’

INTRODUCTION

This essay is the intellectual progeny of some longstanding
preoccupations with basic historiographic matters by one of its
authors. It is, specifically, a. direct outgrowth of issues dealt
with in an article published in the Archive for History of Exact
Sciences.® That article was meant as a sweeping attack on the
prevailing methodology of historians of ancient mathematics, point-
ing out, on the one hand, the inherent inadequacies of that method-
ology and, on the other hand, suggesting an alternative, more sym-
pathetic approach to the historical study of ancient texts. Being,
in part, an open critical assessment of a conventional, customary,
and recognized style in the writing of the history of mathematics,
it was, by its very nature, more than latently polemical. It is,
indeed, arguable whether this represented a praiseworthy feature or
one of the many reasons for its tattered fortuna.? But, be that as
it may, the béte noire of its historical wrath, one of the crucial
concepts in the interpretation of Greek mathematical texts, namely,
the concept of "geometric algebra," seems to go on living somehow
in the works of many historians of mathematics, in spite of its
many shortcomings.

These shortcomings, some of them fatal, were pointed out at
great length in the article "On the Need to Rewrite the History of
Greek Mathematics" and need not detain us here. What needs to be
stated, however, is that the criticisms levelled against the inter-
pretive approach embodied in the idea of "geometric algebra"
focussed on fundamental historico-philosophical considerations and
less on the mathematical underpinnings and consequences of the
positions adopted by "geometrical algebraists." Moreover it was
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repeatedly stated in the course of the argument that mathematically
there was nothing wrong with the reasonings of the adherents of
"geometrical algebra;' what was wrong was endowing those reason-
ings with historical value. It is, therefore, quite possible that
for the mathematically minded historians, who "assume tacitly or
explicitly that mathematical entities reside in the world of
Platonic ideas where they wait patiently to be discovered by the
genius of the working mathematician,"lo the very fact that there
was nothing wrong with the mathematics of "geometric algebra' was
enough of an enticement to see "geometric algebra" as vindicated,
in spite of the "irrelevant" historical, philosophical, and lin-
guistic arguments to the contrary. If the "mathematical histori-
ans" swear by the eleventh commandment (that "mathematical equiva-
lence is ... historical equivalence"ll) and if non-mathematical
arguments, be they historical, philosophical, linguistic or what-
ever, are largely irrelevant then, indeed '"geometrical algebra"

is godly and immortal.

But, alas, it seems that even this concession to the practi-
tioners of "geometric algebra' is an unnecessary one. For as the
present work will convincingly show, the mathematical correspon-
dence that has been concocted in order to demonstrate the equiva-
lence of certain propositions in Greek geometry with other more
familiar results from elementary algebra is, in fact, very weak in
several essential areas. Thus, while the present work represents
a continuation of the line of argument and the entire foray of "On
the Need to Rewrite the History of Greek Mathematics," and while it
adopts ip toto its conclusions, it nevertheless concentrates
directly on the mathematical content of '"geometric algebra." It
takes the mathematical arguments of the proponents of 'geometric
algebra" very seriously and at face value, drawing the ultimate
implications from these arguments. It follows the mathematical
arguments wherever they lead. It adopts the devil's stance (dan-
gerous stance, as any true believer knows) in order to defeat the
devil. It plays the algebraic game in order to show its unaccept-
ability. It aims at undermining the position of the geometrical
algebraists from within. It contains a two-pronged attack on their
approach and results based, on the one hand, on sapping the "arith-
metic" foundations of "geometric algebra' and, on the other hand,
on adducing substantial and weighty evidence indicating that its
alleged purpose, i.e., solving equations, could NOT have been a
matter of immediate concern (if any) to Greek mathematicians of the
classical age. In sum, tactically donning the hat of the geometri-
cal algebraists, it espouses their mathematical cause and pursues
their line of argument to its bitter end, creeping, as it were,
under their skin, in order to show the unwanted and ludicrous, but
necessary and incriminating, extreme consequences of their views;
in taking up the cudgels for "geometric algebra," it strives to
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display its ahistoricity as an interpretive device for Greek mathe-
matics. On the positive side, it advances throughout an alterna-
tive interpretation, one that does no violence to the texts and
their overwhelming geometric character.

The two-pronged attack on "geometric algebra" that is pre-
sented here involves a detailed examination of a good deal of
mathematics, most of which concerns various results that are found
in the Elements of Euclid. For this reason, a prior knowledge of
the Elements, while certainly not indispensable, will prove to be
very beneficial for those readers who wish to grasp the full force
of the arguments presented here, many of which are fairly technical.
Still, we have attempted here to make this study accessible to as
large an audience as possible, and every effort has been made to
keep the presentation as self-contained and self-explanatory as
possible. Of course the drawback to this approach is that it adds
considerabls length to an already long article. This being the
case, we would recommend that those readers who'are thorougly
versed in their Euclid should skim over Section III, No. 4 and 5,
and proceed as quickly as possible to Section III, No. 6 wherein
the heart of our argument commences.

I

1. Before addressing the issue of "geometric algebra" direct-
ly, a few general remarks concerning the nature of algebra itself,
as well as its relationship to arithmetic procedures, need to be
made. In general, the existence of a coherent system of arithmeti-
cal operations is a necessary (though not sufficient) precondition
for the existence of any system of algebra. For fundamental to the
modern post-Viétan algebraic enterprise, used in practice by the
proponents of "geometric algebra," is the abstract treatment of
number, wherein various arithmetic properties and arithmetical rela-
tionships between numbers are extracted, generalized, and thereby
exploited via a system of symbolic manipulation. But under any
suitable, historically reasonable definition of algebra, ancient
Babylonian and classical Greek mathematical texts are not algebraic
in character. In the Babylonian case they are arithmetical, while
in the Greek they are geometrical. Both differ, then, from the
algebraic mode of thinking. It is stacking the cards illegiti-
mately and engaging in what amounts to a petitio principii to
define algebra in an ad hoc manner as the type of reasoning embod-
ied in Babylonian and Greek mathematical texts.l2 Not only is this
not enlightening, as well as historically unacceptable and philo-
sophically indefensible, but it assumes precisely that which needs
proving: an underlying algebraic substructure bolstering ancient
mathematical texts. And yet, this is exactly what is involved in
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the traditional interpretation of ancient mathematics by historians
of mathematics.

Let us see what this means by way of an example drawn from the
mathematical cuneiform texts published by Otto Neugebauer, namely
BM 13901, which reads in translation:

I have subtracted the [side] of the square from the area, and
14, 30 is it.13

Van der Waerden, in response to Unguru's criticism of his position,
having defined algebra as "the art of handling algebraic expres-
sions like (a+b)?2 and of solving equations like xZ + ax = b,"l%
has the following to say about our cuneiform text:

The statement of the problem is completely clear: It is not
necessary to translate it into modern symbolism. If we do
translate it, we obtain the equdtion

%2 - x = 870.
The solution given in the text reads:

Take 1, the coefficient (of the unknwon side). Divide

1 into two equal parts: O0; 30 times 0; 30 is O3 15.

Add this to 14, 30 and (the result) 14, 30; 15 has 28; 30
as a square root. Add the 0; 30 which you have multi-
plied by itself to 29; 30, and 30 is the (side of the)
square.

This is the same method of solution we learn at school.
According to our definition, this is algebra.

What is one to say about this "straightforward" interpreta-
tion, and is it not rather damaging to our approach? Before at-
tempting to answer this question, we must say a few words about
van der Waerden's historical scholarship in this case. Briefly,
van der Waerden introduces his own modifications in the cited text
without calling this to the attention of the reader and these modi-
fications, needless to say, are all supportive of his interpretive
bias. Thus van der Waerden's translation of Neugebauer's rendering
of the solution contains the former's editorial improvements in the
same kind of parenthesis that the latter uses for his textual emen-
dations, thus preventing the reader from realising that the origi-
nal cuneiform has been improved twice. Since, allegedly, van der
Waerden is quoting Neugebauer, such a procedure is inadmissible.}
Also, we disagree with van der Waerden's claim that "the method"
described in the cuneiform text is the method '"we learn at school.”
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In our schools, algebra is not taught by recipes. They teach chefs
de cuisine and simple cooks by this method, not students in secon-

dary schools; the latter are taught first the method of solution of
a general quadratic and then one exemplifies the method by means of
specific equations. Once the general method is understood (or the

quadratic formula available), there is no need anymore for a whole

series of particular, specific equations.

Let us now return to the question of van der Waerden's inter-
pretation of our cuneiform text. Does it fit? And if it does, is
it the only possible interpretation? By transcribing the text as
x? - x = 870, van der Waerden shows that the steps followed by the
scribe in the solution of the problem fit exactly the quadratic
formula (without the second, negative solution, we might add):

S+ /rrer0 =

It

59

+—§—= 30

Nof =

But does this exact fit prove that this is how the scribe proceed-
ed? Not necessarily. There are other possible interpretations
that fit equally well and that are, at the same time, more in tune
with the character of Babylonian mathematics. Here is one such
interpretation.

The fascination of the Babylonian mathematician (the scribe or
the originator of the cuneiform mathematical tablets) with numbers
and numerical operations is well known.l7 The various "table texts"
discussed by Neugebauer are a case in point. There are multiplica-
tion tables, tables of reciprocals, tables of "Pythagorean numbers,"
tables of squares and square roots, cubes and cubic roots, of sums
of squares and cubes, exponential tables, etc.1® It would not,
therefore, be out of character to assume that the Babylonian mathe-
matician knew, as a result of trial and error, how to square a sum
or a difference of specific numbers, say (written anachronisti-
cally), that

B4

(5£3)% = 57 + 2:5:3 + 3% =T
Since in the properly mathematical texts the overwhelming

majority of problems are solved by starting with the known answer,
the mere knowledge of how '"to complete the square" is enough to
understand fully, step by step, the scribe's procedure in the
solution of BM 13901 above. Thus, the sequence of steps described
in the cuneiform text fits exactly the following order of succes-
sion, the scribe having started with the knowledge that 302 - 30
= 14,30:

19
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302 - 2-30-%— + (%)2 = 14,30 + (

1.2
)

(30-~J21)2 = 14,30315,

and, since the numbers are '"rigged," the scribe knows that,

(30-%—)2 = (29; 30)°
30 - -%- = 29; 30
30 = 29; 30 + 0; 30 a

Now it should be clear that this reconstruction of ours, which
is entirely consistent with the scribe's procedure, is to be pre-
ferred to van der Waerden's, which assumes, against the textual
evidence, the availability of the quadratic formula to the Baby-
lonian scribe.

Speaking of his definition of algebra (quoted above),?? van
der Waerden says: "If this definition is applied to any [!] Baby-
lonian or Arab text it is unimportant what symbolism the text
uses."?!  We respectfully dissent. "What symbolism the text uses"
is very important indeed. It is crucial for a historical inter-
pretation to remain faithful to whatever symbolism the text uses,
and if the text fails to use any symbolism whatever, it is crucial
not to introduce into it such foreign symbolism as might betray
(and, as a rule, does betray) the idiosyncratic train of thought
displayed in the text. To be sure, it is possible to translate
existing formulas into words; no question about it. It is also
possible to translate words into formulas, if there exists a for-
mulaic language together with the rules of translation into it,
which is available to and mastered by the translator. But is it
possible to translate specific numbers into non-existing formulas?
Assuming that there was indeed an oral tradition that accompanied
Babylonian mathematics (as both Neugebauer and van der Waerden
insist), could the Babylonians translate a rhetorical statement
from that tradition into a formulaic (symbolic) expression? By the
extant evidence, the answer is clearly, no!

For otherwise the form of the extant Babylonian mathematical
texts would have been other than their actual form, where one and
the same type of problem is repeated many, many times on the same
tablet, only the specific, particular numerical data differing
between neighboring problems. This repetition makes sense only if
the recipe for the solution of a particular kind of problem had to
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be learned and grasped by prolonged practice and reiteration of the
steps involved in that recipe. If the oral tradition had the bene-
fit of formulaic expression (to stretch things to their limit), it
would have been a trivial matter to put such an ability into writ-
ing. What one can say orally, one can ipso facto say in writing.
Alas, the written texts of Babylonian mathematics contain no mani-
pulation of symbols; moreover, what they do contain (the form of
the actual problems, the particular recipes) is incomprehensible in
the presence of symbols, formulas, and general procedures of solu-
tion. To sum up, then, there are no "algebraic expressions like
(a+b)2" in Babylonian texts simply because there are no algebraic
expressions; and, it really follows from this, there are no equa-
‘tions either. Consequently, "the art of solving equations like

x2 + ax = b" is a non-existent art in Babylonian texts. It comes
into being only after the specific Babylonian examples have first
been transcribed into algebraic language. Furthermore, that van
der Waerden's definition of algebra "... is in full accordance with
standard usage from 800 A.D. to the present day"22 is irrelevant
even if true. Tor what is at issue here has nothing to do with the
state of Islamic mathematics in 800 A.D. or with later developments;
rather it is simply a matter of assessing the "state of the art" in
Babylonian times and during classical Greek civilization, and, by
any reasonable standard, there was no algebra in either of these
historical periods.

The conclusion, then, seems inescapable. Van der Waerden's
claim that BM 13901 is "dealing with the solution of quadratic
equations"23 is, strictly speaking, incorrect. The text in ques-
tion enunciates a specific, numerical problem, and the solution-
recipe involves arithmetical operations performed on the given,
specific numbers. It is true that, when translated into modern
symbolism, the problem leads to a quadratic equation and that the
solution-recipe fits the operations performed in the quadratic for-
mula. But this is just one possible approach to and interpretation
of the text and, from what was said above, this is by far the least
acceptable interpretation. Be that as it may, however, there is no
equation in the text and there is no formula. These materialize
only as a result of "[t]he hermeneutic motion, the act of elicita-
tion and appropriative transfer of meaning ..."2% of the mathemati-
cian-interpreter.

Now it is clear that the Neugebauer-van der Waerden algebraic
interpretation of mathematical cuneiform texts 1s just one possible
interpretation. In principle, this should be obviocus for any his-
torical reconstruction of the past. What the historian establishes
never transcends the realm of the possible. In most non-trivial
cases, what the historian of ideas can claim for his interpretation
of past events is that it is more likely than another possible
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interpretation, never that it is the only possible interpretation.
This is the very nature of what has been called "deductive recon-
struction." Such reconstructions are always tentative, hypotheti-
cal, uncertain, for it is at all times conceivable that things
might have been different than they are taken to be in a peculiar
reconstruction. History and certainty rarely, if ever, cohabit.

The literature of the history of mathematics contains indeed
interpretations of Babylonian mathematics that differ in varying
degrees from Neugebauer's theory, which van der Waerden has appro-
pria‘ted.2 To be sure, Neugebauver's interpretation is the most
popular and the best known for clearly understandable reasons:
Neugebauer has been involved for most of his professional life with
editing and commenting upon mathematical and astronomical cuneiform
texts, and his studies are among the most thorough, penetrating,
and competent technical discussions of the Babylonian materials,
carrying great appeal with mathematicians and mathematically-minded
historians. Coupled with this is the fact that he has trained a
number of very able scholars, whose approach to history is largely
that of their master. But, by no means, has his work remained
uncriticized. It is true that most of those who have taken issue
with Neugebauer's hermeneutics have advanced algebraic interpreta-
tions of their own. Nevertheless, the significant thing is that
there are alternatives and that recently the need for a non-alge-
braic, historically more sensitive approach to the texts has come
to the fore.

Among those calling attention to this fact are Michael S.
Mahoney and Arpad SzabS. The former, in an essay review of the
1969 reprint of Neugebauer's Vorgriechische Mathematik,26 points
out that,

It would be best ... to wield Ockham's razor when dealing
with Babylonian mathematics and not to assign to the Baby-
lonians any concept, or form of mathematical thought, for
which there is no explicit documentation, nor even need ...
If ... the Babylonians did mathematics, and even if they did
it remarkably well, there is absolutely no evidence that they
thought about mathematics.... That is why one objects to the
use of [modern algebraic] langua%e and ... concepts in inter-
preting Babylonian mathematics.?

A. Szabd too has taken strong umbrage with Neugebauer's his-
torical methodology. In.an article written for a Festschrift in
honor of Willy Hartner (Prismata), a preprint of which S. Unguru
was fortunate to receive,28 Szabd says, among other things:
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+++ 80 findet man ... in den mathematischen Keilschrifttexten
immer wieder Beispiele mit bestimmten Zahlen. Die konkret-
bestimmten Zahlen waren uberhaupt die Wegweiser, die fur
Neugebauer das Verstehen der babylonischen Aufgaben ermdglich-
ten. Ebenso ermoglichen diese Zahlen in vielen Fdllen das
Vermuten jenes antiken Rechenverfahrens, das beim Losen der
Aufgaben befolgt wurde. Aber redet man nach einer solchen

~ Rekonstruktion von irgendeinem 'algebraischen Formalismus des
Systems', so verzichtet man von vornherein darauf, die antike
Vorlage und die moderne Interpretation sauber auseinander-
zuhalten. Den die Formeln sind nicht unmittelbar im Text
selbst gegeben. Auch wenn sie auf Grund der antiken Vorlage
richtig aufgestellt wurden, sie sind keine antiken Formeln.
Denn zum Aufschreiben dieser angeblich alten Formeln mit
modernen Symbolen anerldsslich notwendig sind seitens des
Historikers auch solche Kentnissé, die nachweislich aus viel
spiteren Zeiten entstammen.2®

At this point, we might add that our interpretation of BM
13901, which we consider a historically more sensitive alternative
to that of van der Waerden, applies in toto to all those cases in
Greek mensurational texts (like Heron of Alexandria's Geometrica)
and also in Diophantus's Arithmetica where so-called 'quadratic
equations" occur. A case in point is the following from Heron's
Geometrica:

Given the sum of the diameter, perimeter and area of a circle,
to find each of them separately. It is to be done thus: Let
the given sum be 212. Multiply this by 154; the result is
32648, To this add 841, making 33489, whose square root is
183. From this take away 29, leaving 154, whose eleventh

part is 14; this will be the diameter of the circle. If you
wish to find the circumference, take 29 from 183, leaving 154
double this, making 308, and take the seventh part which is
4h; this will be the perimeter. To find the area. It is done
thus: Multiply the diameter, 14, by the perimeter, 44, making
616; take the fourth part of this, which is 154; this will be
the %Eea of the circle. The sum of the three numbers is

212,

Assuming again that Heron starts with the known answers, it is
not necessary to suppose (as Ivor Thomas claims) that Heron deals
with a quadratic equation by means of an algebraic formula, but
rather that he plays with specific numbers, completing a given con-
crete numerical relationship toaperfect square. Thus, written
symbolically, D being the diameter and 22/7 the standard
Archimedean value for II, the constant ratio of the circumference
to the diameter, what Heron says is:
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22 11 2 _
D+—7—_D+ED—212

Actually, since Heron knows the answer (D = 14), what he says is:

22 11 2 _
14+ 5=« 14+ 33 ¢ 147 = 212 (1)

His solution-procedure, amounting to the completion to a perfect
square of the given numerical relationship, follows:

11 2 29

'i-l:‘l'-l +-7~’l’+=212
2 2

117 18" + 2 11 ¢ 14 * 29 = 212 ° 154

2

112 e 147 + 2 ¢ 11 - 14 * 29 + 292 = 32648 + 292

(11 « 14 + 29)° = 33u89
11+ 14 + 29 = 183
11 . 14 = 183 - 29

11 . 14 = 154

_ 154
1= ==,

and this 1s the diameter. The perimeter and the area are obtained
from the numerical relationship (I), q.e.d.

The same thing is true about the "quadratic equation'" dppear-
ing in Diophantus IV.39,3l although Diophantus clearly represents
a special and unique case, in the sense that what he is doing is
definitely something unlike anything else that went on before him
in Greek mathematics, namely, in Nesselmann's rather approximative
trichotomous classification, syncopated algebra. Still, it is
not necessary to agree with Ivor Thomas that "Diophantus had a per-
fectly general formula for solving the equation ax?2 = bx + ¢
[and] ... ax?2 + bx = c and ... ax? + ¢ = bx."

It should be clear by now that we believe that there are
important distinctions between algebra and the concrete arithmeti-
cal relationships appearing in Babylonian and some Greek materials.
For there is a vast mathematical gap involved between having a
general knowledge of concrete number facts on the one hand, and
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being able to abstract that knowledge and manipulate it symboli-
cally without any reference to the concrete, on the other. Ignor-
ing these distinctions, representative as they are of a wide gulf
in mathematical outlook and technique, has been one of the main
ways that confusion has arisen over the use of the term "algebra."
It follows, then, that arithmetic precedes algebra, i.e., the exis-
tence of a coherent arithmetic system is required in order to have
an algebraic superstructure, and without a firm arithmetical foun-
dation, the attempt to do algebra (or, in our case, to find alge-
bra) collapses like a house of cards. It is our contention that
this is exactly the predicament of "geometric algebra," the arith-
metical foundations of which turn out, at close scrutiny, to be
rather shaky. To show this convincingly will require an extended
discussion of the various operations that comprise the '"geometric
arithmetic," together with an assessment of their proper place in
what we feel is a viable interpretation of classical Greek mathe-
matics. What will emerge very clearly from this discussion is the
fact that there are insuperable difficulties inherent in this, the
very foundation of "geometrical algebra," and that these difficul-
ties peremptorily show that the foundation is much too weak to sup-
port the weight of the required algebraic superstructure.

2. A noticeable feature that one encounters when reading
Euclid's Elements is the widespread use of operations that we are
apt to associate with arithmetic rather than geometry. When one
is confronted with geometric versions of addition, subtraction,
multiplication, and division (ratio for’mation),gL+ there is an
inevitable tendency to think of these in terms of their more fami-
liar, modern counterparts. Moreover, this tendency will be all the
stronger once one is convinced that Euclid Book II is "nothing but
geometric formulations of algebraic rules."3% For the existence
of these operations only seems to confirm the position that there
is a '"geometric algebra" underlying Greek mathematics, an "algebra"
that is largely hidden from view, but which clearly surfaces in
Book II, in the propositions concerning "application of areas' of
Book VI, and (to a more limited extent) in Books X and XIII. Those
who espouse the position that there was such a "geometric algebra"
have little difficulty in dealing with these "arithmetic" opera-
tions in Greek geometry, because, for them, they are, for all
intents and purposes, the same operations we would employ today,
were we forced to express our algebra entirely in geometrical ter-
minology. They would argue that there are no significant distinc-
tions (ontological and of other kinds) between the Greek operations
and their modern counterparts, and that, in most instances, nothing
is lost by transcribing Greek mathematics into modern notation and
performing modern operations similar to "known" Greek techniques.36
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The practitioners of "geometric algebra" (none of whom were
ancient Greeks) have, however, not been entirely content with the
"arithemtical" operations that explicitly appeéar in the Elements.
Not that there is anything wrong with them; it is just that they
are too limited for the purposes required. What is needed in order
to have an actual (as opposed to a mythical) "geometric algebra,"
is an arithmetic capable of handling arbitrary magnitudes, and so
they invented, what we shall call, the "geometric arithmetic."37
Using this, one is able to perform arithmetic operations in the
general realm of magnitude (uéyefog) rather than in the more
restricted arena of (natural) number (dp16ud¢) or, at most, in
that of ratios of numbers. On the other hand, without such a
"geometric arithmetic'" there is no longer a foundation on which to
build a "geometric algebra," and the entire "algebraic" edifice
crumbles and collapses under its own weight.

3. The operations explicitly referred to in the Elements
have a good deal in common with those of the "geometric arithme-
tic," but the latter has two decided advantages. In the first
place it presents a more unified, and coherent, system of opera-
tions (precisely because it so closely resembles the operations
underlying modern-day algebra). Thus in Book V of the Elements,
there 1s no simple inverse relation between multiplication and
ratio-formation, whereas in '"'geometric arithmetic," ratio-formation
is just one form of division, and division is indeed inversely
related to the multiplication operation. The second advantage that
the "geometric arithmetic" presents is, as we have already indica-
ted, that it provides the necessary foundation for the manufacture
of a "geometric algebra."

There are, however, drawbacks to the system of "geometric
arithmetic," and one of the main theses of this paper is concerned
with showing that these drawbacks easily outweigh the "advantages"
cited above. Initially our attention will be focused on the 'geo-
metric arithmetic" itself, elucidating its structure and the assump-
tions underlying its use. This investigation .will have little
difficulty in revealing the seam along which the operations of
"geometric arithmetic'" have been grafted onto the operations ex-
plicitly enunciated in the Elements. Thus the stitching, the
gluing together of the two operations of "multiplication" (that
found in the Elements and the generalized form found in the 'geome-
tric arithmetic™) turns out to have been most untidily done, and
even a superficial investigation of its character leads to the
preliminary conclusion that the surgery should probably be regarded
as a failure. But, of course, the only real test of a surgical
intervention is to see what happens once the patient has left the
operating table and is out on his own. Thus the crucial test for
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"geometric arithmetic" consists in applying it, in conjunction with
the established techniques of "geometrical algebra" (e.g., Book II),
to solve some of the important algebraic problems that supposedly
engaged the interests of the finest mathenaticians of antiquity.
The results obtained by pursuing this critical test (critical not
just for "geometric arithmetic," but for the entire edifice of
"geometrical algebra') offer a resounding confirmation of our pre-
liminary conclusion. For the "natural" algebraic solutions that
one obtains by pursuing the techniques of "geometric arithmetic" to
their logical end, lead to the creation of a "geometrized" algebra,
utterly unlike anything known in the extant corpus of Greek mathe-
matics.

Let us reiterate, then, that the system of operations we are
about to consider ("geometric arithmetic") does not explicitly
appear as such in any of the Greek texts. We emphasize system
here, because many of the isolated operations of "geometric arith-
metic" are indeed performed in the Elements, but they are never
organized and presented as a unified and coherent network of
"aprithmetic" for manipulating general magnitudes. Thus in arguing
against the existence in Greek mathematics of a generalized arith-
metic replete with the unconstricted operations of addition, sub-
traction, multiplication, and division, we are only making the
.assertion that Greek mathematics is more or less what it appears
to be. It is our contention that one obtains a much truer picture
of the nature of Greek mathematical activity by taking the texts
at pretty near face value, rather than by seeking to imbue them
with a hidden motivation and methodology. The fact that there is
no mention of algebraic equations anywhere in the Greek mathematical
tests under discussion is the strongest possible a priori evidence
that solving such equations was not a matter of ‘central (or any)
importance for the Greeks. This is not just a matter of language
or the lack of a suitable symbolism, rather it is a reflection at
the very deepest level of intrinsically different intentionalities
that distinguish Greek mathematical activity from the modern.3®

Concerning the interpretation of the operations of 'geometric
arithmetic," one is basically faced with choosing between the fol-
lowing two alternatives: One possibility is to accept the position
of the "geometrical algebraists" that "geometric arithmetic' was
indeed an integral part of Greek mathematics, forming the necessary
foundation for the creation of a Greek 'geometric algebra.'" Accord-
ingly "geometric arithmetic" is part and parcel of an underlying
algebra that was not fully discovered until the 19th century, at which
time its existence was discerned and its body restored by histor-
ians of mathematics who used it to legitimize their interpretation
of much of Greek mathematics as algebra in geometric dress. The
other option, the one we will argue for here, suggests that the
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"geometric arithmetic" is really a hybrid creature which can be
dissected along the following lines. First it incorporates the
"arithmetic" operations of addition, subtraction, and ratio-
formation as they are actually found in the Elements. To these,
however, it adds a whole arsenal of geometric operations which are
grafted onto the usual "arithmetical" operations. For the '"geome-
trical algebraists" (who have, in fact, invented this system them-
selves), the result is an "arithmetic" that generalizes the "arith-
.metic" operations explicitly delineated in the Elements; but for
us, this is accomplished only at the cost of badly blurring the
distinction between certain operations which are geometric, (e.g.,
rectangle formation) and others which are "arithmetic" (e.g.,
formation of a ratio). What is even more serious, the operations
of "geometric arithmetic" fail to accomplish their intended pur-
pose. For, as we shall show in the course of our analysis, they
fail to generalize the actual Euclidean "arithmetic" operations in
a consistent manner. In what follows, we will find it convenient
to take T. L. Heath as our main authority on matters concerning the
. "geometric arithmetic," since he is a prime spokesman for the, by
now, conventional view that there was such an arithmetic which
served as the foundation for the '"geometric algebra," and also
because he is a scholar with unversally recognized credentials.

4. A natural point of departure, for our purposes, will be to
consider initially the most elementary "arithmetic" operations,
addition and subtraction, as they actually occur in the Elements.
OQur first observation is that these operations are never defined;
neither is there any explicit indication as to which figures may
be added to, or subtracted from, which nor is there any explanation
of the manner by which these operations are to be carried out. The
only explicit. statement concerning these operations, and an impor-
tant indicator of the broad context in which the Greeks viewed them
as being applicable, occurs in the Common Notions (Koivat Evvoiat):

C.N. 2: If equals be added to equals, the wholes are equal,
C.N. 3: If equals be subtracted from equals, the remainders
are equal.39

Here it is important to notice that addition and subtraction hold
a special place in the Euclidean tradition, owing to the fact that
they are the only arithmetic operations mentioned in the Common
Notions. This suggests that addition and subtraction are unigue
insofar as their range of applicability is concerned. For, as we
shall see later, the fact that there is no corresponding statement
in the Common Notions concerning multiplication, viz., "If equals
be multiplied by equals, the products are equal," is difficult to
explain unless one accepts the view that the multiplication
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operation is more restrictive and does not apply with the same gen-
erality as do addition and subtraction. This is the position we
shall take up and defend later in this paper. The implications
this has for "geometric algebra" are, of course, devastating, for
without a generalized multiplication operation, there is no arith-
metic substructure upon which to build an algebraic system worthy
of the name.

Because there are no specific statements made in the Elements
that would shed light on the nature of the operations of addition
and subtraction, we must learn about this matter from what the
Greeks do rather than from what they say. What we find in Greek
practice confirms the view that addition and subtraction are appli-
cable in the broadest possible context, i.e., to arbitrary magni-
tudes, but with the important proviso that the magnitudes in ques-
tion be homogeneous, i.e., of the same kind. Again, there is no
explicit statement in Euclid to this effect,L*0 nor is there any
indication as to which magnitudes are of which kind. It is not
even clear how many different types of magnitudes were recognized
by Greek geometers, nor is it clear that these matters were ever
given much thought. There is good reason to believe, however, that
the homogeneity relation between magnitudes was primarily an intui-
tive idea so far as Greek geometry was concerned, whereas in philo-
sophic circles (which were, of course, very closely tied to the
mathematical) these matters were hotly debated. ™! Taking these
things into consideration, the best we can hope to do is learn what
we can from the Greek practice involving the manipulation of dif-
ferent kinds of magnitude. It turns out that by doing so, several
important generalizations can be made.

5. When it comes to studying the exact manner in which the
Greeks handled different kinds of magnitude, it is just as impor-
tant to observe what they did not do as it is to observe what they
did. Thus one will not find, for example, a line added to a rec-
tangle anywhere in Euclid, since magnitudes represented by figures
of different dimension are not homogeneous.“z Nor will one find
an angle subtracted from a magnitude represented by a plane figure,
say a square, this in spite of the fact that "... Euclid certainly
regarded angles as magnitudes."43 On the other hand, rectilinear
angles did represent magnitudes of like kind, and therefore could
be added or subtracted as in I.17:

In any trialgle two angles taken together [i.e., added] in
any manner are less than two right angles.”“

We also know that rectilinear and even curvilinear plane figures
Wwere sometimes added, e.g., when Hippocrates shows that squaring




Sabetai Unguru and David E. Rowe 17

the circle is equivalent to squaring a certain lune, he does so by
adding a hexagon to both sides of a certain equality of geometric
figures, thereby obtaining the very pretty result that a triangle
plus a hexagon are equal to the aforesaid lune plus a circle."

Proposition I.47, the so-called "Pythagorean Theorem," gives
an excellent illustration of the broad applicability of Common
Notion 2 (the property that says equality is preserved when equals
are added to equals). The proof makes use of C.N. 2 first for the
addition of angles, and then for the addition of plane areas. The
motivation for the argument comes from the visual appeal of the
"windmill" figure, while the proof itself relies on the idea that
two-dimensional plane figures are homogeneous, and hence can be
added.*® An illustration of subtraction in conjunction with C.N. 3
can be found in the proof of II.1l, which we will examine in detail
when we discuss examples of the alleged Greek solution of quadratic
equations.“7

These, then, are some examples illustrating the manner in
which the Greeks added and subtracted geometric figures. Clearly
these operations are not nearly as general as the modern operations
on general magnitudes, whereby the size of a geometric figure can
be thought of as a positive real number completely independent of
the figure that happens to represent it. Once magnitude is disso-
ciated from geometry, it has the freedom from ontological commit-
ments that makes it possible to develop arithmetical operations
and eventually symbolic manipulations which are the very hallmark
of an algebraic system.8 But first magnitude must become number.
What we have seen is that, although addition and subtraction are
employed for general magnitudes in the Euclidean tradition, the
dependence of these operations on a geometric formulation imposes
a limitation that makes these operations qualitatively different
from their modern counterparts. The modern notion of real number
transcends this limitation, making it possible to equate and com-
pare figures of differing dimensions, equating these in turn with
angles or anything whatsoever capable of being measured. When
number reigns supreme, everything can be related numerically to
anything else. This the Greek could not do.

6. With this as background, we shall now consider what Heath
has to say concerning the role these fundamental operations (addi-
tion and subtraction) play in the "geometric arithmetic":

The addition and subtraction of quantities represented in the
geometrical algebra by lines is of course effected by produc-
ing the line to the required extent or cutting off a portion
of it.*?
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Thus the prototypic representation of a one-dimensional magni-
tude is a straight line of appropriate length, whereupon addition
and subtraction are performed in the obvious manner. For two-
dimensional magnitudes the prototypic figure is the rectangle,
which gives a geometric representation for the product of two mag-
nitudes:

The addition and subtraction of products is, in the geometric
algebra, the addition and subtraction of rectangles or squares;
the sum or difference can be transformed into a single rectan-
gle by means of the application of areas to any line of given
length, corresponding to the algebraical process of finding a
common measure. >

The "application of areas" (mapaBoAfl Twv xwp lwv) turns out to
be the key ingredient, in fact, the very heart of the '"geometric
algebra." Thus in debunking the latter idea, it is imperative that
we give a good deal of considered attention to the former. What-
ever the status of "geometric algebra" might be, there is no ques-
tion but that the "application of areas" played an important role
in Greek mathematics. This will be made. abundantly clear in Sec-
tion III below, wherein we study its alleged use as a means for
obtaining solutions to second degree equations. But, for now, we
must postpone detailed discussion of this important topic, and
merely indicate the manner in which it applies to the immediate
problem of adding or subtracting rectangles.

7. The following two propositions are fundamental to the
"application of areas," and, furthermore, form a key cornerstone

in the "geometric arithmetic":

I.44: To a given straight line to apply, in a given recti-
lineal angle, a parallelogram equal to a given tri-
angle.51

I.45: To construct, in a given rectilineal angle, a garal—
lelogram equal to a given rectilineal figure.S

Using these results, it is an easy matter to prove the follow-
ing corollary, which is, surprisingly enough, conspicuously absent
from the Elements. We shall call it I.45A:

I.45A: To a given straight line to apply, in a given recti-
lineal angle, a parallelogram equal to a given
rectilineal figure.

The following argument gives a simple proof for this important
result. We are given a line AB, and angle R, and a rectilinear
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figure S, and we wish to construct a parallelogram with base equal
to AB, base angle equal to R, and area equal to S. First apply
I.45 +to transform the figure S into the parallelogram FGHK
equal in area with S (the angle GFK bein§ arbitrary). Next, we
use I1.10°% +to bisect AB at C. By I.34,°% the diagonal of the
parallelogram FGHK divides the figure into two equal triangles.
Using I.44, we can apply to AC a parallelogram equal to triangle
FGH in the angle R. On the remaining segment CB we can apply
another parallelogram in the same angle and equal to triangle FHK
(which equals FGH, by I.34). Since the applied parallelograms
are equal, so are the four triangles obtained by joining their
diagonals. Thus triangle ADC equals triangle CEB and they lie
on equal bases AC and CB. Hence, by I.40, 55 the triangles ADC
and CEB are in the same parallels, proving that ABEP is the
desired parallelogram.>®

There can be little doubt that the geometers of Euclid's day,
and probably of earlier times, were well aware of the full power
of what we have called I.45A, even though the explicit statement
and proof of I.45 that appears in the Elements says nothing about
applying the given rectilineal figure to a given line. However,
this seems to have been nothing more than a minor slip on the part
of the author, for when I.45 is eventually requlred in the proof of
Proposition VI.25, 57 the full force of I.45A is, as a matter of
fact, utilized. Now Heath makes extensive use of the full force of
I.45A (but without ever saying so), making it into a crucial tool
for the operations of the "geometric arithmetic." Because of this,
we will find it convenient in subsequent discussions to refer to
this result simply by number. Bearing this in mind, let us now
consider precisely what role Proposition I.45A plays in the con-
text of the "geometric arithmetic.”
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8. If we restrict I.45A to the case where the given recti-
lineal figure is a rectangle and the given angle a right angle, it
can readily be seen that this is exactly what is needed in order
to add and subtract rectangles just as Heath indicated above. For
if we are given two rectangles A and B, I.45A enables us to
transform B to a rectangle B', where B' is equal to B and
has the same height as A. Then A +B = A+ B' = C, where C
is formed by adding the bases of A and B' (an operation that
Heath has already defined, see #5 above). To subtract B from A
we simply follow the same procedure, only this time, subtracting
the base of B' from the base of A.

Fig. I.2

The key step in adding A +to B is the transformation of B
to B' wusing I.45A. In the language of "geometric arithmetic,"
this procedure is one form of "division'":

The division of a product of two quantities by a third is
represented in the geometrical algebra [or, as we would
prefer to say, "geometric arithmetic"] by the finding of a
rectangle with one side of a given length and equal to a
given rectangle or square. This is the problem of agElica—
tion of areas solved in I.44, 45 [actually, I.u45A].

The use of "application of areas" in order to add and subtract
rectangles plays a key role in the arguments appearing in Book X.
One finds "additions" of rectangles, for example, in Propositions
X.23, 25, 41, 47, etc., while X.38, 75, 78, etc. utilize subtrac-
tion, and X.60-65 invoke both operations. Thus there is no ques-
tion about the significance of these techniques. The issue,
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rather, concerns whether or not the Greeks employed these tech-
niques as part of a systematic arithmetic for general magnitudes.
In this regard, it is interesting to look at Heath's remarks fol-
lowing Proposition I.uh4:

This proposition will always remain one of the most impres-
sive in all geometry when account is taken (1) of the great
importance of the result obtained, the transformation of a
parallelogram of any shape into another with the same angle
and of equal area but with one side of any given length, e.g.
a unit length, and (2) of the simplicity of the means
employed...>

Later, in Section III, we will discuss I.44 in detail as part
of a survey of the method of "application of areas," but here we
would be remiss not to mention the fact that Heath seems to misre-
present intentionally Euclid in order to bolster his view that I.ul4
and I.45 are two key ingredients in the machinery of the "geomet-
ric arithmetic." Proposition I.u44 does not deal with the "trans-
formation of a parallelogram;" the figure undergoing a "transfor-
mation" is a triangle. Furthermore, the proposition says nothing
about the transformation of a figure of "any shape into another
with the same angle ..." — the given angle of the resulting paral-
~ lelogram is, in fact, completely arbitrary.

Finally, there is the suggestion that one side of the con-
structed parallelogram might be a "unit length." This remark
appears to suggest (is there any other feasible interpretation for
it?) a possibility pregnant with implications for Greek geometry,
namely, the utilization of I.44 as a mechanism for the determina-
tion of plane areas! TFor if a plane figure can be transformed into
a rectangle (which happens to be the "[mJost important of all ...
parallelograms ... [as it] corresponds to the product of two mag-
nitudes in algebra ..."),60 then the "great importance" of I.ul is
(according to Heath) due to the fact that this rectangle can be
transformed "into another with the same angle and of equal area
but with one side of any given length, e.g. a unit length;" the
upshot of all this being that, since the newly formed rectangle
represents a product with one side of unit length, the other side
"measures'" the area of the original plane figure. Thus it seems
impossible to escape the conclusion that Heath is alluding here to
a procedure for measuring the area of plane figures. Furthermore,
by utilizing the above transformation, the problem of determining
the size of a two-dimensional figure is reduced to a one-dimen-
sional problem, namely "measuring" the line that forms the other
side of the newly formed rectangle. This is an attractive idea,
especially when taken in conjunction with a similar interpretation
for Euclid's approach in Book X of the Elements.®! Alas, it has
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the unfortunate drawback that it never seems to appear anywhere in
the extant corpus of Greek mathematics. Considering the tight
strictures that the Greek concept of magnitude imposes on doing
"arithmetic," however, (i.e., the strict adherence to the princi-
ple that only homogeneous magnitudes can be combined, etc.), it
should not be at all surprising that the Greeks themselves "over-
looked" the "great importance” of I.u44. For had they employed

this proposition in the manner Heath suggests, the integrity of the
principle that magnitudes of different dimension are distinct would
have been weakened, thereby opening the way for the formulation of
a conception of magnitude not just as size, but as generalized
number, completely independent of any particular geometric repre-
sentation. As we shall soon see, the evidence that the Greeks

ever reached such a modern conception of magnitude is, to put it
mildly, extremely weak.

The above mistakes that appear in Heath's commentary are,
taken by themselves, hardly worth pointing out (except for, per-
haps, the last one); taken together, however, they are very signif-
icant, as they reveal important interpretive biases that have
apparently led Sir Thomas to twist the evidence a bit. If we turn
to Heath's remarks following I.u45, we find (curiously enough) the
same combination of bold assertion and misrepresentation of fact:

We have now learnt how to represent any rectilineal area,
which can of course be resolved into triangles, by a single
parallelogram having one side equal to any given straight
line [our emphasis] and one angle equal to any given recti-
lineal angle. Most important of all such parallelograms is
the rectangle, which is one of the simplest forms in which .
an area can be shown. Since a rectangle corresponds to the
product of two magnitudes in algebra, we see ... [among
other things that such a representation] enables us to add
or subtract any rectilineal areas and to represent the sum
or difference by one rectangle with one side of any given
length, the procegg—being the equivalent of obtaining a
common factor. 82

We have emphasized the phrase "having one side equal to any given
straight line" in order to call attention to the fact that, again,
this is not a faithful rendering of Euclid. There is no mention
in I.45 of a given line forming one side of the parallelogram;
Heath is, once again, alluding to what we called Proposition I.45A,
and not I.45. It is certainly surprising that Heath never once
alludes to the fact that the key Proposition I.45A, which is used
implicitly in the proof of VI.25 and throughout Book X, is neither
enunciated nor proved anywhere in the Elements!
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We have not called attention to these "sins" of omission and
commission in Heath's commentary merely for the sake of nit-picking.
Rather our purpose in bringing this up is to illustrate the some-
times rather subtle interpretive bias that colors Heath's other-
wise admirable commentary on the Elements. For it seems to us that
there is something more than mere accident behind Heath's uncharac-
teristic carelessness in discussing I.44 and 45, especially con-
sidering the "great importance" he attaches to these results. Why
is it, we must ask, that this great scholar, who normally devotes
meticulous attention to even the slightest details, is so sloppy
when it comes to these important matters to which, moreover, he
pays such short shrift?

Our impression is that these are not just haphazard over-
sights, but rather clear reflections of the interpretive bias that
colors Heath's otherwise illuminating commentary. For the source
of these errors is intimately connected with Heath's desire to
extract the essential significance of I.4i, 45 for Greek mathema-
tics, which, for him, consists in the possibility of incorporating
these results into a unified system of generalized arithmetic.
According to this view, Propositions I.44, 45 have as their only
raison d'étre, the addition of a needed weapon to the arsenal of
operations that comprise the "geometric arithmetic."

Now, by these remarks, we do not mean to imply that a commen-
tator could or should be without interpretive biases. If that
were the case there would be no point in writing a commentary in
the first place. Neither do we mean to imply that there is any-
thing secretive or mysterious about Heath's views concerning the
nature of the mathematics in the Elements. These are plainly
written and readily apparent to any careful reader. The point is
that before we accept Heath's views lock, stock, and barrel, we
need to examine precisely what the Euclidean text says. In the
course of our analysis, we shall see to what extent Heath's views
are justified. In the meantime, it is a healthy activity to
expunge from Heath's notes those remarks which clearly run counter
to the letter and the spirit of Greek mathematics. Certainly one
would not want to do without Heath's invaluable commentary, but it
is important that we separate the wheat from the chaff, so to
speak, by rendering unto Euclid what is Euclid's, while rendering
unto Sir Thomas what is Sir Thomas'.




24 Does the Quadratic Equation Have Greek Roots?

I1

l. In section I we discussed the operations of addition and
subtraction, both as they appear in the Elements and as important
components of the "geometric arithmetic.'" This discussion pro-
vides us with the necessary background information that sets the
stage for much of the analysis that will now follow. One of the
key ideas we discussed (and that bears repeating, as it directly
affects the main issue in this section) concerns the fact that,
throughout classical Greek mathematics, there is a strict adher-
ence to the principle that only magnitudes of like species can be -
added or subtracted. In particular, this means that there was no
generalized concept of number underlying Greek magnitude, and,
hence, no idea of combining magnitudes of different dimensions.
We also saw that, except for the somewhat subtle matter of homo-
geneity, addition and subtraction were perfectly general opera-
tions that could be applied to arbitrary magnitudes. It was this
generality of application that, we conjectured, accounts for the
fact that addition and subtraction are the only "arithmetic"
operations appearing in the Common Notions.

Our discussion of addition and subtraction also indicated how
these operations have been especially adapted to, and thereby
. incorporated into, the "geometric arithmetic.'" Of particular
interest in this regard is the use of "application of areas' as a
means of making the addition and subtraction of two dimensional
figures truly operational. As we noted earlier, this technique is
an important device in the arguments of Book X.

This is the background the reader should keep in mind when
considering the arguments that follow. It will be observed, how-
ever, that nothing we have said so far, pertaining to addition and
subtraction, is terribly damaging to the stronghold of "geometric
arithmetic," and, as a matter of fact, this powerful interpretive
bastion is not terribly vulnerable along this particular front,
the reason being that addition and subtraction are indeed general
operations. The weak link in the "geometric arithmetic" turns out
to be the multiplication operation, which represents the product
of two magnitudes (given as lines) by the formation of the rectan-
gle with the given lines as sides. As we shall argue momentarily,
this operation, unlike addition and subtraction, does not fit
nearly so nicely into the framework of "geometric arithmetic."
For, as we shall see, the operations of rectangle formation and
ordinary multiplication, as explicitly performed throughout the
Elements, are in fact incompatible with one another, i.e., rec-
tangle formation cannot be "generalized multiplication" without
producing inconsistency in the system of operations that we know
the CGreeks utilized. Before coming to this, however, we must




Sabetai Unguru and David E. Rowe: : 25

first consider the evidence from the other side, beginning again
with Heath's views on this subject.

There is no direct textual evidence that the Greeks ever
viewed the formation of a rectangle on two given sides as multi-
plication, and Heath appears to rest his case that they did view
it in this manner on the "plausibility" of extending the rectangu-
lar representation of products in the Pythagorean ¥Yé¢ol ("pebble")
arithmetic to arbitrary magnitudes. In the ''pebble" arithmetic:

A '"plane number" is ... described as a number obtained by
multiplying two numbers together, which two numbers are
sometimes spoken of as "sides," sometimes as the "length"
and "breadth" respectively, of the number which is their
product.

The product of two numbers was thus represented geometrically
by the rectangle contained by the straight lines representing
the two numbers respectively. It only needed the discovery
of incommensurable or irrational straight lines in order to
represent geometrically by a rectangle the product of any

two quantities whatever, rational or irrational ...®3

Heath's argument, then, rests on the assumption that since, in
the Pythagorean ¥é¢oi-arithmetic, the product of two numbers was
represented by a rectangle, it was natural for the later Greeks,
who had adopted much of the Pythagorean number theory already, to
use this geometrical formulation as the definition of multiplica-
tion for arbitrary magnitudes. Thus Heath is drawing on the fact
that the terms 'square', 'plane', and solid' number, etc., defined
in Euclid Book VII are believed to have evolved from the Pythagor-
ean Yépor-arithmetic. But this is really a gratuitous argument.
For what one finds throughout the "arithmetical books" of the
Elements, i.e. Books VII-IX, is that, even though abundant use is
made of the terms 'plane-', 'square-', etc. numbers, yet never
are these represented by rectangles or squares but always by
lines.®% These Pythagorean terms, as they appear in Euclid, are
merely designations, a scheme for the purpose of classifying
numbers; they serve as standard categories for differentiating
various species of number via natural geometrical analogues. There
is, however, no wholesale adoption of the Pythagorean 'pebble"
arithmetic in the Elements, much less an extension of it to gen-
eral magnitudes. Rather what we find is that the Pythagorean
categories are employed in Euclid as an analogy for the classifi-
cation, and not the geometrical representation, of numbers.

Is there any other evidence, then, that might be brought
against our thesis that rectangle formation is not generalized
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multiplication in Greek mathematics? Certainly many authorities
would point to Book X in this regard,65 but as we have already
indicated (EE" n. 61), Book X should be regarded as a gualita—
tive treatment of commensurability relations between geometric
figures, wherein rectangle formation as a geometric operation
plays a key role. Moreover, there is a strict adherence through-
out Book X to the integrity of the homogeneity relation underlying
the Greek "arithmetic" dealing with magnitudes. One other poten-
tial counter-argument we would like to anticipate stems from
Euclid VI.16:

If four straight lines be proportional, the rectangle con-
tained by the extremes is equal to the rectangle contained
by the means; and, if the rectangle contained by the extremes
be equal to the rectangel contained by the means, the four
straight lines will be proportional.®®

Certainly this has a familiar algebraic ring to it, as it
seems to say that, a/b = ¢/d 1if and only if ad = bc. So it is
rather surprising, at first, to find that Heath, who generally
makes a practice of tramscribing the results of Greek proportion
theory into modern notation, says nothing in his commentary that
even hints at the obvious parallel between VI.1l6 and the arithme-
tic property that says "in fractions, the product of the means
equals the product of the extremes.'" Could it be that Sir Thomas
has entirely forgotten that, in his own words:

The equivalent of multiplication is the construction of the
rectangle of which the given lines are adjacent sides. The
equivalent of the division of one quantity represented by a
line by another quantity represented by a line is simply the
statement of a ratio between lines on the principles of
Books V. and VI.b67

If we examine the situation more closely, however, it turns
out that there are very good reasons both for what Heath says about
VI. 16, and for what he does not say. To see this clearly, we must
turn to his remarks made at the very beginning of Book VI:

The theory of proportions has been established in Book V. in
a perfectly general form applicable to all kinds of magnitudes
(although the representation of magnitudes by straight lines
gives it a geometrical appearance); it is now necessary to
apply the theory to the particular case of geometrical inves-
tigation.

Here Heath has aptly characterized not only the underlying
structure, but also the motivation behind the layout of Books V
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and VI. Book V presents a general theory of proportion that deals
with the theoretical manipulation, via ratio and proportion, of any
homogeneous entities whatever that happen to possess magnitude.
Using this theory, one no longer had (closely paraphrasing
Aristotle) to develop separate arguments for numbers, lines, sol-
ids, and times, as it was now possible to consider the entire
genus of magnitude at once and prove pertinent conclusions for all
kinds of magnitude by one demonstration.®? Book VI, on the other
hand, shows how the general theory contained in Book V can be
applied to the situation of paramount interest, namely the study
of geometric figures. It is, therefore, highly significant that
VI.16 occurs where it does, and not in Book V, as this is a strong
indicator that this proposition was primarily a geometric result
and not a theoretical relationship on a par with the other results
obtained in Book V. Heath's remarks following VI.16 are, in fact,
fully consistent with this interpretation. He observes, for exam-
ple, that VI.16 is actually only a particular case of VI.1h:

In equal and equiangular parallelograms the sides about the
equal angles are reciprocally proportional; and equiangular
parallelograms in which the sides about the equal angles are
reciprocally proportional are equal.

The proof of VI.1l6 amounts to nothing more than a trivial two-
fold application of VI.1lh4, which is itself proved by way of a
straightforward application of the geometric fact contained in
VI.1 that "... parallelograms which are under the same height are
to one another as their bases."’! The above reasons seem to us to
constitute a sufficiently compelling answer to those who would
maintain that VI.16 is nothing more than the Greek formulation of
the property that multiplication and division are inversely
related. The fact that this proposition occurs in Book VI and not
in Book V, emphatically suggests that its motivation has more to
do with its geometric content than with its alleged algebraic
utility.

2. We must now turn to the evidence against the view that
rectangle formation meant, for the Greeks, generalized multipli-
cation, by first con31der1ng Greek multiplication as it actually
appears in the Elements. In Definition VII.1l5, we have an explicit
statement of what it means to multiply numbers:

A number is said to multiply [ToAramAaoiazetv] a number when
that which is multiplied is added to itself as many times as
there are units in the other, and thus some number is pro-
duced.”?




.28 Does the Quadratic Equation Have Greek Roots?

Thus multiplication of numbers is the familiar operation of
repeated addition, an operation which, when applied to one-dimen-
sional magnitudes, produces not a two-dimensional but another one-
dimensional magnitude. But multiplication is not confined to
numbers in Greek mathematics, as can be seen from a cursory inspec-
tion of Book V, wherein it serves as the very backbone of the
general theory or proportion. Thus we encounter the term multiple
[roAramidotoc] in Definition V.2,73 and we see it actually used as
a criterion for homogeneity in Definitions V.3 and 4:

V.3: A ratio is a sort of relation in respect of size
[mnA1kétnc] between two magnitudes of the same kind.”"
V.4: Magnitudes are said to have a ratio to one another
~which are capable, when multiplied [moAXamiaocrazdueva,
from moAdamiacidgeiv], of exceeding one another.

Here, and throughout Book V, multiplication means one thing and
one thing only — repeated addition. Furthermore, Definitions V.3
and 4 together imply that two magnitudes are homogeneous if and
only if some multiple of one exceeds the other, i.e. if and only
if the magnitudes have a ratio with one another.

We are now in a position to see the essential interplay
between the operations of addition, subtraction, multiplication,
and ratio formation as they actually occur in the Elements of
Greek mathematics. The key feature upon which we wish to focus
our attention concerns the fact that these operations are only
applied to homogeneous magnitudes, i.e., magnitudes of the same
dimension. In this sense these operations form a coherent system
of "arithmetic," but one with idiosyncrasies all its own. For
example, there is an asymmetric quality about Greek multiplication
that differentiates it from the other operations. Whereas addi-
tion, subtraction, and ratio-formation are defined for arbitrary
pairs of homogeneous magnitudes, multiplication requires that one
of these magnitudes be a number.’® The interplay between ratio-
formation and the other operations is also highly idiosyncratic.

. The ratio between two magnitudes of the same kind can equal a num-
 ber, a ratio of numbers, or, when the magnitudes are incommensur-
able, their ratio may be one of several types as, for example, in
Book X. There is interplay between addition and ratio formation
in V.1877 (anachronistically, a:b = c:d implies (a+b):b= (c+d):d)
and between subtraction and ratio formation in V.1978 (a:b = c:d
implies (a-c):(b-d) = a:b). These properties have a significance
in Greek ratio and proportion theory far beyond the mere fact that
they happen to be, for us, valid rules that apply to fractions.
They also happen to be, for us, utterly trivial. One way we might
verify both V.18 and 19 is by multiplying means and extremes.
Thus, for V.18,
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(a+tb):b = (ctd):d # (atb)d = b(c+d)

ad + bd

il

bec + bd
ad = bc

But ad = bc ® a:b = c:d. Hence a:b = c:d is actually equiva-
lent to (atb):b = (ctd):d. Yet this argument cannot be applied
using the Greek methods, as there is no general principle in Greek
mathematics that in any way resembles a:b = c:d if and only if
ad = bec (VI.16 applies only to lines).’?® '

Another curious quality of ratios is that, unlike the other
operations, ratio-formation produces a quantity without extension.
The ratio between two three-dimensional magnitudes is not a three-
dimensional magnitude, nor is it a two- or even one-dimensional
magnitude; it is a pure, dimensionless quantity residing in a realm
of magnitude without extension, a veritable scalar quantity. This
gives us an important clue (which we will now pursue) to how the
Greeks themselves viewed the essential interplay between ratio-
formation, on the one hand, and generalized "multiplication" on
the other.

We have seen that, in the Greek "arithmetical" system, ratio
is defined for any pair of homogeneous magnitudes, and that ratios
themselves are magnitudes without dimension. Multiplication, on
the other hand, is confined, in the Elements at least, to the
situation where at least one of the factors is a number. We have
also seen that the attempt to generalize this multiplication oper-
ation, by introducing rectangle formation as an arithmetic opera-
tion, has been accomplished only by ignoring substantial textual
evidence to the contrary. The question thus arises: Was there
ever a generalized "multiplication" operation in Greek geometry
that served as the inverse of Greek style ratio-formation?

One does not need to look very far before answering this
question, as there is indeed a well-known Greek technique, which
effectively generalizes the operation of multiplication as repeated
addition, and which also comes one step closer to being a true
inverse for ratio-formation, namely the technique of solving for
the fourth proportional.80 Thus if a, b, and ¢ are arbitrary.
lines, then applying VI.12, one can find x such that a:b = c:x,
i.e., b:a = =x:c. It will readily be seen that, in the case where
b:a is a number m (i.e., b 1is a multiple of a), the line =x
obtained via VI.12 is precisely the same as the line obtained by
multiplying c¢ +times m. Now it must be recognized that this
procedure is still a far cry from being a true inverse to ratio-
formation, as, for one thing, it is only explicitly worked out for
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lines in the Elements. If a, b, and ¢ were arbitrary curvi-
linear plane figures, for example, the prospects for obtaining x
such that a:b = c:x would be slim indeed.

The key point we wish to emphasize, however, is not this.
Rather it concerns the fact that, once we view the technique of
solving for the fourth proportional as a kind of generalized mul-
tiplication, there is still a completely coherent system of opera-
tions at work here that, nevertheless, preserves the homogeneity
of the magnitudes involved. One can compare the relative sizes of
two homogeneous magnitudes by forming their ratio, and one can
"multiply" a given magnitude (assuming the fourth proportional can
be found) by a ratio, thereby realizing another homogeneous magni-
tude, bearing a prescribed ratio to the original. Thus all of the
various "arithmetical operations' come together to form a coherent
network for the manipulation of general, but homogeneous, magni-
tudes, and if this system lacks the absolute freedom that we, who
have had the benefit of an algebraic heritage placed at our dis-
posal, so easily take for granted, it still presents a neat, dove-
tailed system of operations, altogether suited to the Greek view
of magnitude as a genus wherein each species must be treated separ-
ately.

3. A corollary to the above 1s that addition, subtraction,
and multiplication (viewed as repeated addition) all preserve
dimension, and it is absolutely essential that they do so. For,
as we have seen, addition, subtraction, and ratio formation all
requive that the dimensions of the magnitudes involved be equal.
It follows that the introduction by .Heath and others of the opera-
tion of rectangle formation as generalized multiplication repre-
sents a radical break with the intrinsic principles underlying the
operations explicitly performed in the Elements. The representa-
tion of products via rectangle formation, which is the very cor-
nerstone of "geometric arithmetic," overlooks precisely the funda-
mental tenet of homogeneity that governs the entire Greek treat-
ment of magnitude. This situation, once its implications are
realized, presents a real dilemma for the "geometric arithmetic,"
even though the practitioners of "geometric algebra" have either
underestimated its significance or else overlooked it completely.
Thus having opted for the view that rectangle formation was, for
the Greeks, generalized multiplication, they have conveniently
overlooked the difficulty that arises here due to the peculiar
restrictions that the Greek concept of ratio places on the magni-
tudes involved. For if rectangle formation is supposed to be an
extension of the known technique for multiplying numbers, this new
technique ought to yield the same answers as the old one, which it
clearly does not, if one adheres to the principles employed in
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Greek geometry. For instance, multiplication of four times three,
using the two definitions available for the purpose, produces, on
the one hand, a rectangle of twelve square units, on the other, a
line of twelve units. But, being magnitudes of different dimen-
sion, these two products (which are presumably equal to one anoth-
er) have no ratio to one another. As a matter of fact, according
to the rectangle definition, the product, twelve, cannot be com-
pared with either of its factors, four and three!

Yet any attempt to bypass this first horn of the dilemma
brings us face to face with the second. Seeing that it is patent
nonsense to have a number which has no ratio to any of its factors,
one might seek to get around this by simply transforming one num-
ber to another "equal" number 'reexpressed" by using the appro-
priate dimension. With this approach, there is never any diffi-
culty in "dividing" the line of length four into the rectangle with
sides of length four and three, as one can transform the line into
a rectangle (4 units by 1 unit) and then form the ratio between
the two rectangles to obtain the answer, i.e., the ratio 3:1 repre-
senting the number 3. But it should be apparent that this approach
amounts to nothing less than the abandonment of dimension (and
hence the principle of homogeneity) altogether, a mistake which
Heath, van der Waerden, et al. (at least sometimes) carefully
avoid. Yet it is also apparent that if one wishes to cling to the
view that rectangle formation represents a generalization of ordi-
nary Greek multiplication, then these two definitions can be recon-
ciled in no other way. If four times three equals, on the one
hand, a rectangle, and, on the other hand, a line, then clearly if
they are to be equal, one must insist that magnitude is independent
of dimension.

Now the stance that Heath and others have adopted towards this
dilemma does nothing, in truth, to remedy the situation. According
to Heath, as we saw,

The equivalent of the division of one quantity represented
by a line by another quantity represented by a line is simply
the statement of a ratio between lines on the principles of
Books V and VI. The division of a product of two quantities
by a third is represented in the geometrical algebra by the

* finding of a rectangle with one side of a given length and
equal to a given rectangle or square. This is the problem
of application of areas solved in I.ul, 45,81

One would assume that these operations generalize to three
dimensions, even though Heath does not say so explicitly. If this
were so, division of magnitudes of the same dimension, whether
lines, rectangles, or rectangular solids, would be accomplished
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via ratio-formation, whereas division of a three-dimensional mag-
nitude by an one- or two-dimensional magnitude would involve an
application of volumes. The trickier of the two latter cases in-
volves the construction of a rectangular solid on a given base and
equal to a given rectangular solid. But this is really straight-
forward. For if, when written symbolically, ab and =xyz are the
given base and solid respectively, then applying our I.45A to the
rectangular area Xy, we can construct ap = xy, and reapplying
I.U5A to pz we have bq = pz. Thus, =xyz = apz = abq, q.e.d.
as desired! This, needless to say, never appears in Greek mathe-
matics.

What we have, then, is a bifurcated definition of division
which utilizes ratio-formation when the dimensions are equal, and
an appropriate "application of areas' when they are not; or, for
that matter, even "application of volumes" when needed! This
might, at first, seem to solve the dilemma posed by the two forms
of multiplication (i.e. the one found in Greek mathematics and the
other in '"geometric arithmetic"): To divide the rectangle of area
twelve by the line of length four, one simply applies a new rectan-
gle, equal to the old one, to the line of length four, producing
another line (the other side of the newly formed rectangle) of
length three.

But it should be clear that this technique really does nothing
to resolve the issue we have raised here, since there still remains
a rift in the operation of division. This rift only serves to
camouflage the same basic difficulty that one faces all along when
one attempts to use rectangle formation as a definition for gener-
alized multiplication, namely, the homogeneity relation between
magnitudes gets lost in the shuffle. For example, take an arbi-
trary rectangle measuring twelve square units and "divide" it by
a line segment of length twelve. This could be done, from what
was said above, by constructing a twelve unit by one unit rectan-
gle. Now if rectangle formation actually extends the usual Greek
operation for numbers, it follows that 12 ¢+ 1 = 12, i.e., the
rectangle and the line are both equal. But if they are equal,
they must have a ratio which clearly they do not unless the line
can be transformed to the rectangle and vice-versa, i.e. unless
magnitude is independent of dimension. So, again, we are led to
the inevitable conclusion that viewing rectangle formation as
generalized multiplication requires that we abandon the homogeneity
relation underlying the Greek theory of magnitude, and, in par-
ticular, that we view Greek magnitude as being independent of
dimension.

If we stop to consider what this bifurcated form of division
amounts to, we soon realize that the roots of its split-appearance
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are already present in the conflicting definitions for multipli-
cation that we have considered above. On the one hand, the Greek
definitions for multiplication and ratio-formation go hand in hand
to form, along with addition and subtraction, a reasonably inte-
grated system of "arithmetical" operations that preserves the
integrity of the homogeneity relation between magnitudes; whereas,
on the other hand, rectangle formation and "application of areas"
are natural, inverse, geometric operations. However the attempt
to put the arithmetical and geometrical operations together to
form an arithmetic for general magnitudes creates a hybrid crea-
ture that plays havoc with the central assumptions of Greek geome-
try.

4. It is our contention that the dilemma posed by the incom-
patibility between rectangle formation as generalized multiplica-
tion and the homogeneity relation underlying Greek magnitude can
be resolved in but one reasonable way, mamely by taking rectangle
formation at face value, precisely the way we find it throughout
Greek geometry, and viewing it as a geometric operation and not as
part of a system of generalized arithmetic. Thus, while recog-
nizing the operational character of this construction, as well as
the close analogy it shares with the geometric properties of num- 7
bers, we cannot accept that this construction was part of an -
"algebraicized" geometry which sought to extend the ordinary
"arithmetic" operations found in the Elements. These two systems
(geometrical and "arithmetical') cannot be fused into one without
altering altogether the character of Greek geometry, since the
"arithmetic" system found in the Elements cannot withstand the
type of surgery required to support an algebra for general magni-
tudes. It follows that rectangle formation, "application of
areas," etc. should be viewed as geometric operations and not as
part of an integrated, generalized system of "arithmetic." Thus
the only "division" in Greek mathematics is ratio-formation, and
we can quite confidently assert that no Greek would have confused
this operation with the application of a rectangle to a given line
by thinking of the two as but different forms of a more general
"division" operation. In regard to rectangle formation, we are
inclined to view the approach of Dijksterhuis as speaking sympa-
thetically to the issue at hand.82 For, by adopting a special
notation for various geometric operations, e.g.,

m{a,b) = parallelogram with sides a, b.
0(a,b) = rectangle with sides a, b.
T(a) = square of side a,
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he, at once, calls attention to the importance and operational
character of these constructions, while at the same time emphasiz-
ing that they are geometric operations, and not part of a "geome-
tric arithmetic," and, as such, should not be confused with the
ordinary operations of Greek "arithmetic'" from which, as we have
seen, they differ fundamentally.

The alternative position concerning "geometric arithmetic"
is motivated by the belief that the study of magnitude for its own
sake, i1.e. magnitude divorced from geometry, held a central place
~in Greek mathematics. The proponents of this view argue that, to
accomplish this, the Greeks found it convenient to associate cer-
tain geometric operations (e.g. rectangle formation and "applica-
tion of areas") with other arithmetical operations (e.g. multipli-
cation and division) in order to establish the necessary foundation
for the study of various numerical relationships between certain
magnitudes, or classes of magnitudes.

But, given what has been said above, it should by now be clear
that this position can no longer be accepted. Not only is its
motivation wrong, but the very argument used to support it is both
methodologically inappropriate and actually inapplicable. The
approach of van der Waerden and Freudenthal illustrates what we
mean very clearly.B3 For they have adopted a viewpoint regarding
these matters altogether consonant with the spirit of modern-day
mathematics, which teaches us that there is no essential (mathe-
maticall!) difference between the notions of rectangle formation
and multiplication of magnitudes, so long as we can exhibit an
isomorphism between their mathematical structures. Forming the

sos 2 .
square on 2 and writing a are, accordingly, only

different names for what is the same mathematical operation, once
we have stripped away superfluous notation. It is, therefore,
altogether fitting that Freudenthal should adopt as his motto,
"But what is in a name?",8% since for him, there is absolutely no
loss of information in transcribing a geometric operation into an
algebraic one, once the alleged isomorphism has been identified.

The objections to the use of this approach as a methodologi-
cal principle in the study of history of mathematics have been
thoroughly covered in Unguru's "On the Need to Rewrite the History
of Greek mathematics' and therefore, need not detain us here.85
What does need pointing out is the fact that what the proponents
of "geometric algebra' have taken as a virtual mathematical verity
(namely the alleged isomorphism between the structures of 'geome-
tric algebra'" and modern day elementary algebra) is, in fact,
nothing more than a superficial similarity that conveys nothing
significant about the fundamental character and assumptions of
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Greek geometry. For, as we have already seen, the attempt to
integrate the fundamental operations of "geometric arithmetic"
into Greek geometry (i.e., the attempt to view these operations

as already embedded within the Greek system) leads to immediate
contradiction and confusion. The fact is (and this will become
more and more clear in the course of our analysis) that the alleged
mathematical correspondence between portions of Greek geometry and
elementary, modern-day algebra is, in reality, very weak. It is
not enough to point out, as do van der Waerden and Freudenthal,
that there is a "resemblance'" between some of the propositions in
Books II, X, and XIII and various familiar algebraic identities,
in order to conclude that the outwardly geometric Greek operations
were actually algebraically motivated. One must also show that
such an interpretation is consistent with what we find in the
‘actual performance practice of Greek mathematicians, and here, in
this all important respect, the "isomorphism" breaks down.

Thus the argument of the "geometrical algebraists" is not
only methodologically misguided, it is also actually inapplicable.
Moreover, it imputes to Greek mathematics a hidden motivation that
is altogether misleading. For the fundamental assumption under-
lying the theory of "geometric algebra" is that the study of mag-
nitude for its own sake, i.e., as number, was of fundamental
importance for Greek mathematics; on no other assumption can the
notion of an algebra (whether "geometric" or not) be made intelli-
gible. The fact that van der Waerden et al. completely downplay
this foundational principle is further testimony to their unwill-
ingness to assess accurately the implications of their position
that Greek mathematics was algebraically motivated. For if arbi-
trary magnitudes (represented by lines) could be added, subtracted,
multiplied, and divided; if they could be manipulated as quanti-
ties satisfying all the familiar properties of elementary algebra
(associativity, distributivity, etc.), and treated as constants
and unknowns in algebraic equations; if all that is true, then
certainly magnitude, for the Greeks, was number. And yet the pro-
ponents of "geometric algebra" seem to be most reluctant to follow
their position to this, its inevitable conclusion, and for a very
good reason — there is not a shred of evidence that would support
such a claim. The attempt to see algebra lurking behind the pro-
positions of Greek geometry can only be done at the cost of over-
looking the intrinsic geometrical setting that persistently moti-
vates Greek mathematics. Searching for its motivation by way of
a hidden algebra based on geometric operations, whose "arithmetic
content" is never explicitly stated, amounts, in our opinion, to
an inversion of means and ends. Tor while the practitioners of
"geometrical algebra' hold to the view that the geometrical form
(in, for example, the "application of areas'") is incidental to the
true algebraic content, it is our contention that "arithmetic"
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operations and quasi-"algebraic'" relations were never an end unto
themselves, but were always used as a means for the solution of
problems that were grounded primarily, if not exclusively, in the
rich soil of Greek geometry.

5. We have seen so far that the attempt to understand Greek
mathematics as "geometric algebra" requires first of all an appro-
priate system of arithmetical operations, i.e., a 'geometric
arithmetic," and, secondly, something even more fundamental, an
appropriate geometric quantity, upon which the arithmetical system
can operate. Both of these are essential ingredients without which
the possibility of having a "geometric algebra" is simply unthink-
able. The appropriate geometric quantity for "geometric arithme-
tic" is the Greek notion of magnitude, and it is for this reason
that the acceptance of "geometric algebra" necessarily entails the
view that, for the Greeks, magnitude was number.

Now, as we have already remarked, few writers have taken it
upon themselves to address this issue head-on. There have been
several, however, who have found the Greek notion of ratio, rather
than the concept of magnitude itself, amenable to a treatment simi-
lar to the modern approach toward the positive real numbers. In
particular, Definition V.5, which gives a criterion for the pro-
portionality of magnitudes, seems to these writers to resemble
. closely familiar properties of the real number system. Here is
Heath's summary of the views of one such author:

Max Simon remarks ..., after Zeuthen, that Euclid's defini-
tion of equal ratios is word for word the same as Weierstrass'
definition of equal numbers. So far from agreeing in the
usual view that the Greeks saw in the irrational no number,
Simon thinks it is clear from Eucl. V. that they possessed

a notion of number in all its generality as clearly defined
as,Bgay almost identical with, Weierstrass' conception of

it.

If Heath never explicitly endorses this view, he certainly
sounds a sympathetic note, by continuing:

Certain it is that there is an exact correspondence, almost
coincidence, between Euclid's definition of equal ratios
and the modern theory of irrationals due to Dedekind.87

And, after explaining this correspondence, he concludes that:

.+. Euclid's definition divides all rational numbers into
two coextensive classes, and therefore defines equal ratios
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in a manner exactly corresponding to Dedekind's theory.88

Now, what Heath says here is, strictly speaking, correct;
there is, interestingly enough, a very close, mathématical corre-
spondence between Definition V.5 and the Dedekind Cut. However
the inference that there is something more than mere happenstance
at work here is misleading. For despite the formal correspondence
discernible between the two, they are, from the vantage point of
the history of ideas, totally unrelated. The overriding distinc-
tion between the two ideas has to do with their motivation or
intentionality. Dedekind's method amounts to showing how it is
possible to construct the real number continuum out of the rational
numbers, by considering all possible partitions of the latter as
a linearly ordered set. When each of these partitions or cuts is
assigned a real number, it can be proven that all the "holes" are
filled in, or, to speak in more mathematical terms, that, in this
larger system, all Cauchy sequences converge.89 But, to state the
obvious, Definition V.5 has an entirely different motivation from
this. There is no question of constructing something out of some-
thing else, because the ratios themselves, which are the object of
the definition, are already given, they already exist. Nor is
there any interest in showing that the collection of all ratios
forms a complete space (i.e. showing that all Cauchy sequences
converge). What the Greek mind is interested in is defining a
criterion of equality of ratios, the net effect of which is to
make it possible to order the collection of ratios so as to ascer-
tain whether a given ratio is equal to, less than, or greater than,
another given ratio.%0 If there is more to the theory than this,
then we ask, (and, in spite of the strangeness and the apparent
ahistoricity of this question, it surely is apposite when addressed
to geometrical algebraists) where in Greek mathematics is there
any evidence indicating that Definition V.5 was ever used in order
to argue that a certain Cauchy sequence of ratios must converge to
a definite limit ratio? ...

Now according to Heath, there is another important property
of ratios, which along with the idea of the Dedekind Cut, makes
ratio, rather than magnitude, more suitable for comparison with
the modern notion of (positive) real number:

We have already in Books I and II made acquaintance with one
important part of what has been well called geometrical alge-
bra, the method, namely, of application of areas. We have
seen that this method, working by the representation of pro-
ducts of two quantities as rectangles, enables us to solve
some particular quadratic equations. But the limitations

of such a method are obvious. So long as general quantities
are represented by straight lines only, we cannot, if our
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geometry is plane, deal with products of more than two such
quantities; and, even by the use of three dimensions, we
cannot work with products of more than three quantities,
since no geometrical meaning could be attached to such a pro-
duct. This limitation disappears so soon as we can represent
any general quantity, corresponding to what we denote by a
letter in algebra, by a ratio; and this we can do because, on
the general theory of proportion established in Book V, a
ratio may be a ratio of two incommensurable quantities as
well as of commensurables. Ratios can be compounded ad
infinitum, and the division of one ratio by another is equal-
ly easy, since it is the same thing as compounding the first
ratio with the inverse of the second. Thus e.g. it is seen
at once that the coefficients in a quadratic of the most
general form can be represented by ratios between straight
lines, and the solution by means of Books I and II of prob-
lems corresponding to quadratic equations with particular
coefficients can now be extended to cover any quadratic with
real roots.2!

Heath's claim, regarding the suitability of utilizing ratios
as coefficients for quadratic equations, will be criticized later
in Section III. Here we wish to focus on his contention that the
Greeks used ratios in order to get around the problem of the in-
crease in dimension that accompanies the multiplication of magni-
tudes. Heath seems to suggest that the Greeks could simply replace
their magnitudes by ratios, and rectangle formation by the opera-
tion of compounding ratios. His assertion is that these entities
and operations were, for the Greeks, mathematically equivalent.
All we can say is that, so far as we are aware, there is not a
single instance in Greek mathematics wherein magnitudes and rec-
tangle formation are replaced by ratios and the operation of com-
pounding them in order to obtain otherwise impossible results.
Elsewhere in his commentary, Heath reverts to his usual, sober
outlook, and frankly admits that the operation of multiplying
ratios 1s unknown in Greek geometry.92 How he can then claim that
compounding ratios is the same as forming the rectangle on two
lines is a mystery to us. Moreover, were this the case, one won-
ders why the Greeks should ever have bothered with their 'geome-
tric algebra" at all — it would have been so much easier simply
to have used ratios! It is our impression that Heath's ideas here
are nothing more than an ex post facto reconstruction with no
historical basis whatsocever.

In our opinion, the proper perspective on Greek magnitude and
ratio comes from viewing them as grounded in nothing more than the
notion of size (wniikdtn¢). Heath has aptly suggested that the
relationship between magnitude, péyebog, and size, TNAIKSTNG, can
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be understood by thinking of size as an attribute possessed by
magnitude.93 Ratio, on the other hand, is, to paraphrase Euclid,

a sort of relation between the sizes of two magnitudes of the same
kind.%% It is, in effect, a theoretical measuring stick that tells
us something about the relative sizes of two magnitudes. Thus we
have come full circle returning again to the whole crux of the
matter for Greek geometry. To be algebraic, to have a 'geometric
algebra," requires that magnitude be viewed as number, which
amounts to more than being amenable to measure, it must also be
amenable to manipulation via addition, subtraction, multiplication,
and division. Yet, as we have conclusively shown, it is impossible
to integrate these operations into a cohesive, general arithmetic
system without doing irreparable damage to the integrity of the
original Greek system.

(To be continued in Volume II, 1982.)
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I"The Soul and the Word leave [the boedy] through the same
orlflce "

2Traité Flémentaire de Chimie, 2 vols., vol. 1 (Paris, 1789),
pD-. V-VII ("Discours Préliminaire').

After Babel: Aspects of. Language and Translation (London,
etc.: Oxford Unlver81ty Press, 1975), pp. 24, 216, 3539.

As quoted in ibid., p. 8I1.

SIbid. , p. 4020

635 qu quoted in C. K. Ogden and I. A. Richards, The Meaning of
Meaning (New York: Harcourt, Brace and World, Inc., n.d. — first
published in 1923), p. XXIV.

7%ehmmmmnmofwhw%(kw%m Basic Books,
1973) p. 18.

8S. Unguru, "On the Need to Rewrite the History of Greek
Mathematlcs," Archive, vol. 15, no. 1 (1975), pp. 67-114.

9Ccf. B. L. van der Waerden, "Defense of a 'Schocking' Point
of View," Archive for History of Exact Sciences, vol. 15, no. 3
(1976), pp. 199-210; Hans Freudenthal, '"What Is Algebra and What
Has It Been in Hlstory," ibid., vol. 16, no. 3 (1977), pp. 189-200;
André Weil, "Who Betrayed Euclid?", ibid., vol. 19, no. 2 (1978),
pp. 91-93. A concise and drastlcally civilized rejoinder to the
above appeared, after many exertions, in S. Unguru, "History of
Ancient Mathematics: Some Reflections on the State of the Art "
Isis, vol. 70, no. 254 (1979), pp. 555-565. The preceding llst
does not exhaust the numerous reactions to the "On the Need to
Rewrite'"-article. Most of these reactions, however (all of the
favorable ones), came in private communications from colleagues,
friends and students, either in personal letters (scripta manent)
or orally (verba volant).

L0nHistory of Ancient Mathematics," p. 555.

111hid.

12yhile one cannot dispute what Hans Freudenthal ("What is
Algebra and What has it been in History?", p. 193) says about
there being no "Supreme Court to decide such questions" as "What
is algebra?", it should be clear that the implications inherent
in his retort to Unguru ("But What is in a name?", ibid., p. 194)
lead to precisely the kind of disregard for the hlstor1c1ty of
ideas that we find exemplified so well in van der Waerden's Science
Awakening (New York: John Wiley and Sons, Inc., 1963, hereinafter
referred to as SA). Thus algebra is, more or less, anything one
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wants it to be. For Freudenthal, the "ability to describe rela-
tions and solving procedures, and the techniques involved in a
general way, is ... such an important feature of algebraic think-
ing that I am willing to extend the name 'algebra' to it ..."
(ibid., pp. 193-94). Our opinion on this matter can be gleaned
from S. Unguru, "History of Ancient Mathematics," pp. 557-561.
As in that paper, here too we.take algebra to be that branch of
mathematics whose primary purpose is finding unknowns, i.e. solv-
ing equations. In the final analysis, the approach of Freudenthal
and van der Waerden is nothing more than a convenient cover for
all those who wish to transcribe ancient mathematics into modern
symbolism with impunity, and it inevitably leads to a confusion
between the suppositions that govern the practice of ancient mathe-
matics and those which govern our own. Calling the Greek tech-
niques of alternation, inversion, composition, separation, and
conversion (cf. T. L. Heath, The Thirteen Books of Euclid's Ele-
ments, 3 vols. (Cambridge: AT the University Press, 1908), here-
inafter referred to as EE, vol. 2, pp. 114-115) "algebraic opera-
tions" (Freudenthal, op. cit., p. 195) serves only to identify
them with modern rules for manipulating fractions, the net result
being that important distinctions that should be made between the
two become lost.

130tto Neugebauer, Mathematische Keilschrift-Texte (MKT),
III, p. 6, in Quellen und Studien zur Geschichte der Mathematik
Astronomie und Physik (Q.u.S.), vol. 3 (1937), Abteilung A
(Quellen). The notation 14, 30 is Neugebauer's way of expressing
numbers in the Babylonian sexagesimal system. Thus 14,30 -1
= 14 x 80 + 30 = 870, whereas 14,303;15 = 14 x 60 + 30 + 15 x 60

. 1
= 870 I

l4npefence of a 'Shocking' Point of View," p. 199.

151bid., pp. 200-201.

16Van der Waerden's emendations themselves are not without
interest. For example he adds after "coefficient," "(of the
unknown side)" which appears neither in the original nor in
Neugebauer's German translation (cf. "Defence of a 'Shocking'
Point of View," p. 201 with MKT, vol. III, p. 6, line 5 and p. 1,
line 5). Furthermore, he ignores Neugebauer's distinction between
two different kinds of emendation (for clarification purposes and
"Ergdnzung zerstérter Stellen" (MKT, vol. II, p. 7 in Q.u.S., A,
vol. 3 (1935)) throughout the "quotatlon " Moreover ‘there are
serious questions about Neugebauer's own translation. For exam-
ple, Neugebauer translates "mGglichst unbestimmt" pigitam by
"coefficient" (MKT, III, p. 5), while Thureau-Dangin translates it
always as "l'unlte,” (ibid., p. 11) and points out that "la sig-
nification est trés uncertaine" (ibid.).

17g5¢e 0. Neugebauer, The Exact Sciences in Antiquity (Prince-
ton, N.J.: Princeton University Press, 1952), passim.
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187bid., chapter II, "Babylonian Mathematics," pp. 28-53.

199, Neugebauer, Vorgriechische Mathematik (Berlin: Springer-
Verlag, 1934; reprinted Springer-Verlag, 1969), p. 33.

20cf. text to note 14 above.

21"pefence," p. 200, our italics.

221bid.

237pid.

24%pfter Babel, p. 296.

25Most of these alternative interpretations are, however,
algebraic. Cf. S. Gandz, "The Origin and Development of the Qua-
dratic Equations in Babylonian, Greek and Early Arabic Algebra,"
Osiris, vol. 3 (1938), pp. 405-557; Kurt Vogel, Vorgriechische
Mathematik, 2 vols. (Hannover: Paderborn, 1958-59); "Bemerkungen
zu den quadratischen Gleichungen der babylonischen Mathematik,"
Osiris, vol. 1 (1936), pp. 703~717; "Zur Berechnung der quadratis-
chen Gleichungen bei den Babyloniern," Unterrichtsblitter fur
Mathematik und Naturwissenschaften, vol. 39 (1933), pp. 76-81;
also, Thureau-Dangin's works.

26"Babylonian Algebra: Form vs. Content," Studies in History
and Philosophy of Science, vol. 1 (1870-71), pp. 369-380.

27Tbid., p. 377. Mahoney's essay should be read in its entir-
ety for the cogent criticism it contains of Neugebauer's (i.e.,
van der Waerden's) approach.

28vZum Problem der sog. 'Geometrischen Algebra' in Euklids
Elementen," completed in 1975. We had no access to the printed
volume Prismata in which it appeared.

29Tpid., pp. 19-20 of the manuscript.

30Tvor Thomas, Selections Illustrating the History of Greek
Mathematics (SGM), 2 vols. (London and Cambridge, Mass.: William
Heinemann Ltd. and Harvard University Press, 1951), in vol. 2, pp.
503-505.

3l1pid., pp. 527-535.

32For Jacob Klein (cf. Greek Mathematical Thought and the
Origin of Algebra (Cambridge, Mass.: M.I.T. Press, 1968), pp.
127-149, passim), Diophantus's Arithmetica belongs to the category
of theoretical logistic.

330p. cit., p. 533.

34Addition and subtraction can be found at the very beginning
of the Elements in Common Notions 2 and 3, which state that equal-
ity is preserved when equals are added (respectively subtracted)
to (or from) equals. These principles can be seen in practice in
the proofs of Propositions I.47 and II.1l. Multiplication and
ratio formation do not occur until Book V, where they are funda-
mental to the theory of general proportion that is developed
therein. Cf. EE, vol. 2, pp. 113-114, for the use of multiple
(roAdamAdoio¢) and the definition of ratio (Adyo¢). The concept
of ratio that appears in Euclid (Definitions V.3 and 4) is for
some modern tastes rather opaque, and D. H. Fowler ("Ratio in
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Early Greek Mathematics," Bulletin of the American Mathematical
Society, vol. 1 (1979), no. 6, pp. 807-846, on p. 812) has even
argued that Adyo¢ should be taken as an undefined term in the
Elements! This would appear, however, to be a substitution of
modern for ancient standards of rigor, as it is not at all uncom-
mon to find important concepts in Greek mathematics that are
barely defined (or never defined at all), yet which seem to have
been understood intuitively. It is a mistake to think that there
is an airtight logical system in the Elements that relegates each
concept to one of two categories, i.e., that regards each concept
as being either defined or undefined. An even worse mistake would
be to imagine that the undefined terms of Greek mathematics have
the same freedom from ontological commitments as do undefined
terms in modern mathematics. The fact is that there seems to be

a vast grey area between the defined and undefined terms of Greek
mathematics. Multiplication is a perfect example of this, as it
is never explicitly defined in Book V, and yet its definition as
repeated addition is altogether clear once we understand the prin-
ciples behind the Greek theory of general proportion (particularly
Definition V.5). An explicit definition of multiplication
(moXlamiaciaopuoc) is given in Definition VII.15, as part of the
proportion theory for numbers.

358, L. van der Waerden, SA, p. 118.

367 major fallacy behind the notion of "geometric algebra"
concerns the question of which "algebraic operations' were actually
"known" to the Greeks. If we are to accept van der Waerden's more
extreme views on the subject, it would seem that the "known'" oper-
ations consist of anything that one can reconstruct and render
into algebraic language. Thus, after asserting that '"geometric
algebra" was derived from Babylonian sources, he informs us that
in Greek hands this Babylonian "algebra" is "... translated into
geometric terminology. But since it is indeed a translation which
occurs here and the line of thought is algebraic, there is no
danger of misrepresentation, if we reconvert the derivations into
algebraic language and use modern notations" (SA, p. 119, our
emphasis). TFor a detailed discussion and criticism of the method-
ological assumptions underlying the concept of "geometric algebra'
and of the practices employed by its proponents, cf. Unguru, "On
the Need to Rewrite the History of Greek Mathematics," passim.

37The earliest formulation of the operations comprising the
"geometric arithmetic" that we are aware of appears in H. G.
Zeuthen, Die Lehre von den Kegelschnitten im Altertum, (Hildesheim:
Georg Olms, 1966, being a photographic reproduction of the
Copenhagen, 1886 edition), pp. 14-15.

38In this regard, Jacob Klein (Greek Mathematical Thought and
the Origin of Algebra, pp. 117-118) has this to say: "The diffi-
culties in the way of an adequate understanding of the Greek doc-
trine of number lie above all ... in our own manner of dealing
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with concepts — in the nature of our own intentionality." By
intentionality Klein means, "... the mode in which our thought,
and also our words, signify or intend their objects" (p. 118).
Thus he continues: "The necessity of abstaining as far as possi-
ble from the use of modern concepts in the interpretation of
ancient texts is therefore generally accepted, and even stressed.
It is clear, to be sure, that the feasibility of an interpretation
not based on modern presuppositions must always be limited; even
if we succeed in ridding ourselves completely of present-day sci-
entific terminology, it remains immensely difficult to leave that
medium of ordinary intentionality which corresponds to our mode
of thinking, a mode essentially established in the last four cen-
turies. On the other hand, the ancient mode of thinking and con-
ceiving is, after all, not totally 'strange' or closed to us.
Rather, the relation of our concepts to those of the ancients is
oddly 'ruptured' — our approach to an understanding of the world
is rooted in the achievements of Greek science, but it has broken
loose from the presuppositions which determined the Greek develop-
ment. If we are to clarify our own conceptual presuppositions we
must always keep in mind the difference in the circumstances sur-
rounding our own science and that of the Greeks" (p. 118). Here,
and throughout his book, Klein displays a rare and admirable sen-
sitivity to issues that are vital for the interpretation of
ancient mathematics. Another writer who must also be commended
for his insight into the specific dangers involved in the "geome-
tric algebra'-approach to Greek mathematics is E. J. Dijksterhuis
(cf., n. 82). J. Klein also calls attention to this issue (ibid.,
p. 122).

3%EE, vol. 1, p. 155.

“0The only explicit mention of homogeneity occurs in Defini-
tion V.3: "A ratio is a sort of relation in respect of size
between two magnitudes of the same kind" (EE) vol. 2, p. 114).

“1In this connection, cf. Heath's discussion on species of
"lines" (EE, vol. 1, pp. 159-165) and species of "angles" (pp.
176-179).

“20ne finds this practice employed only in the late Hellenis-
tic period, for example in Heron (fl. 2nd half of 1st Cent. A.D.).
We have encountered such an example above (see text to n. 30).

“3Heath's view as expressed in EE, vol. 1, p. 178.

44Tbid., p. 281.

*SThomas, SGM, vol. 1, pp. 248-253.

“65ee below our discussion in Section III, no. 5. Tor a
thorough treatment of I.u47, cf. EE, vol. 1, pp. 349-50 followed
by Heath's analysis, on pp. 350-368.

“7See below our section ITI, no. 5 or EE, vol. 1, pp. 402-403.

487 fipst step toward this liberation of magnitude from geom-
etry was taken by Frangois Viéte (1540-1603), in his In artem
analyticen Isagoge (Introduction to the Analytical Art) which first
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appeared in 1591. In Chapter II (pp. 322-324 of the appendix to
Jacob Klein's Greek Mathematical Thought and the Origin of Alge-
bra) viéte laid down his "stipulations (symbola) governing equa-
tions and proportions.” These principles give a good indication
of the enormous gap that exists between the "arithmetic" opera-
tions together with their concomitant properties as found in
Euclid, and the modern "laws of algegra" that we are nowadays so
accustomed to taking for granted. For example, the first four
symbola include the Common Notions of the Elements, and many of
the others are similar to results that are proven in the Elements
(cf. Klein's listing in op. cit., p. 263). But, significantly,
there are also several algebraic rules that are missing from Euclid
like:

(5) If equals are multiplied by equals, the products are
equal.
(6) If equals are divided by equals, the results are equal.

One can, of course, take the position that Viéte was only recon-
structing techniques that were latent in Greek mathematics all
along. (This, in fact, seems to have been Vidte's own view of the
situation.,) To take this position seriously, however, one must at
least attempt to elucidate the precise manner in which these tech-
niques were then utilized by Greek mathematicians, and this the
practitioners of 'geometric algebra" seem none too eager to do.
Needless to add, we disagree with the view that Viéte's techniques
were actually Greek.

%9EE, vol. 1, p. 37u.

50Thid.

517pid., p. 3ul.

527pbid., p. 345.

535 bisect a given finite straight line" (ibid., p. 267).

Shngp parallelogrammic areas the opposite sides and angles
are equal to one another, and the diameter bisects the areas"
(ibid., p. 323).

5§"Equal triangles which are on equal bases and on the same
side are also in the same parallels" (ibid., p. 337).

56The simplest way to prove I.45A is to make a slight modi-
fication in the proof of I.u45. The proof in Euclid uses I.42
followed by I.44, whereas it is just as easy to use I.u44 twice,
which insures that the parallelogram ultimately obtained has one
side equal to a given length as required in I.45A. Cf. below,
section III, no. 4 or EE, vol. 1, pp. 345-346.

S70To construct one and the same figure similar to a given
rectilineal figure and equal to another given rectilineal figure"
(EE, vol. 2, p. 253).

 S8EE, vol. 1, pp. 37..
59Tbid., pp. 342-u43.
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60Heath's remark in EE, vol. 1, p. 347.

6l1n Book X a means is established for classifying various
types of incommensurable magnitudes. The basic idea can be seen
from Definition X.2, which introduces the notion of magnitudes
(represented by llnes) that are commensurable in square (Svvduet
ovuuerpog), i.e., lines the squares on which are commensurable
with one another. Thus if a given line is taken as unit, the
collection of all lines which are commensurable in square with
this given line includes all of the lines commensurable in length
(pnketl) with the given line as well as many others besides, e.g.,
the diagonal of the square on the unit, for the square on the diag-
onal is exactly twice the area of the unit'square, and hence is
commensurable with it. One sees here, then, the attempt to uti-
lize two dimensional figures in order to make assertions about
one~-dimensional figures, namely lines. Moreover, there are numer-
ous instances throughout Book X wherein "application of areas" is
itilized. In fact, almost everywhere that one finds a two-dimen-
sional figure in Book X, the proof accompanying it involves an
"application of area," e.g., Propositions 20, 22, 23, 25, 26, 38,
41, 60-65, 72, 75, 78, 81, 84, 97-102, 108, 109, 111, 114. Occa-
sionally the proofs call for an "application with defect" (never
with "excess") and in these cases the "defect" is always a square.
(gﬁf, for example, X.17, 18, 33, 34, 54, 55, 91-99.) With this
information in hand, it is easier to understand Heath's misread-
ing of I.44, as the circumstances he describes fit precisely those
found in Book X, wherein I.45A is implicitly used in order to
transform one rectangle into another with one side of a given
length. (Only in Proposition X.38 does Heath mistakenly cite I.u4l4
as the means for accomplishing this transformation, elsewhere he
simply asserts that the application is done, without reference to
the means by which it is accomplished.) But nowhere in Book X is
an "application of area'" performed where one side is designated
to be a unit length! In fact, the entire procedure underlying
Book X has nothing to do with measuring figures per se. In many
situations, a line in Book X can be replaced by another line com-
mensurable with it and the argument will be unaffected. Indeed
the whole point of Book X seems to be to demonstrate the existence
of certain "equivalence classes'" that arise in the study of magni-
tude (cf. X.111, EE, vol. 3, pp. 242-243); its object is qualita-
tive, not quantltatlve There is absolutely no distinction between
different magnitudes within a given "eguivalence class," hence size
is irrelevant. Furthermore, there is a strict adherence to the
integrity of dimension throughout Book X. Although information
pertaining to the square on a line is utilized to make assertions
about the line itself, there is not the slightest suggestion any-
where that one can correlate magnitudes of different dimensions by
u81ng ratlos or anything else.

EE vol. 1, p. 3u47.
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631pid., p. 372.
64EE, vol. 2, pp. 277-424.
65g§. SA, pp. 168-172.
66EE, vol. 2, p. 221.
67EE, vol. 1, p. 374.
68EE, vol. 2, p. 187.
69Cf., Aristotle, The Works of Aristotle, ed. Ross (Oxford/
London: Oxford University Press/Humphrey Milford, 1937 reprlnt
of the 1lst ed. of 1928) vol. 1, Analytica Posteriora, I.5, 742
17-25.
70EE, vol. 2, p. 216.
- 717pid., p. 191.
72Tpid., p. 278.
73Definition V.2: "The greater is a multiple of the less
when it is measured by the less" (ibid., p. 113).
74Tbid., p. 114.
75Tbid.
76Thus multiplication, viewed as a binary operation, does not
necessarily involve homogeneous magnitudes. The homogeneity
restriction arises only when multiplication is viewed as an n-fold
appllcatlon of addition.
Prop031tlon V.18: "If magnitudes be proportional separando,
they w1ll also be proportional componendo" (ibid., p. 169).
78proposition V.19: "If, as a whole is to a whole, so is a
part subtracted to a part subtracted the remainder will also be
to the remainder as whole to whole" (1b1d., D 174).
79Fuclid assumes, in the course of proving Prop. V.18, that
given an arbitrary ratio and an arbitrary magnitude, there exists
a fourth proportional. But, as Heath rightly points out, this is
a logical error (ibid., pp. 169-170).
80Tn this context, Euclid's remarks in the Data are pertinent.
Definition II of Euclid's Data reads: "A ratio is said to be
given, when a ratio of a given magnitude to a given magnitude
which is the same ratio with it can be found" (The Elements of
Euclid, Books I-VI, XI, XII, and the Data, ed. R. Simson (London:
G. Woodfall, 20th ed., 1822), p. 359). This indicates the usual
format (as well as the name) when solving for the fourth propor-
tional, i.e., one is given a pair of homogeneous magnitudes and a
third magnitude, from which one must construct a fourth magnitude
such that the ratios between the given pair and the latter two
magnitudes are equal.
81EE, vol. 1, p. 374.
82Dijksterhuis was also one of the first to recognize the
dangers inherent in the notion of '"geometric algebra." The follow-
ing passage, "translated" by E. M. Bruins, from the second volume
of De Elementen van Euclides was written in 1930 and shows that
the main features of the present situation were already recognized
even fifty years ago:
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The second Book of the Elements, elaborating the proposi-
tions I. 43-47, brings about the foundation of a method of
research typical for Greek mathematics of which the impor-
tance can be briefly depicted indicating that it enabled

the Greek mathematicians to obtain without the help of an
algebra a great number of results, which in our times seem
to be almost inseparably connected with an application of
ralgebraic concepts and methods to geometry. The explanation
of this theory is rendered more difficult by a danger, which
always threatens everybody, who wishes to write about Greek
mathematics from the modern point of view, but here in par-
ticular, namely, that one using to explain classical reason-
ings — for abbreviation and clarification — modern concepts
and symbols, comes to ascribe to these reasonings a tenor
which, historically, they did not have. This danger is
threatening thus much exactly for the subject which is to be
treated now, because, as we shall see, the steps of the Greek
mathematical argument can be rendered one by one in the
language of the modern mathematics; our familiarity with that
language together with our being strange to the much more
clumsy wording of the Greeks seduces soon to modernize with
the form also the thought" (the rendering of Evert M. Bruins
in Janus (1975), 62, p. 309).

Regarding "geometric algebra' itself, Dijksterhuis has this to say:
Thus it is evident that the use of linesegments [sic] and
areas enabled the Greeks, notwithstanding their limited con-
cept of number and their lacking an algebra, to treat magni-
tudes which we would render by positive real numbers and
between which we discover relations following an algebraic
method. The method applied is generally named, following
Zeuthen, by geometric algebra, "da dieselbe," as Zeuthen
himself formulates it, "als Algebra teils allgemeiner Grdssen,
irrationale sowie rationale behandelt, teils andere Mittel
als die gewdhnliche Sprache benutzt, um ihr Verfahren
anscheulich zu machen und dem Gedachtnis einzuprigen." We
shall in this work not follow this usage. As an objection
to the use of the word "algebra" in this context can be put
forward, that the Greek method does not have in the great
majority of the cases the symbolical character, which we
nowadays do connect inseparably with .the concept of an alge-
bra. (Bruins' translation, ibid., pp. 309-310).

8395:, n. 12 and n. 34 above.

84Freudenthal, "What is Algebra," p. 194.

85Unguru, op. cit., pp. 73-76, 88-89, passim.

86EE, vol. 2, p. 124.

87Tbid.

88Tbid., p. 126. Oskar Becker ("Eudoxos-Studien II. Warum
haben die Griechen die Existenz der vierten Proportionale
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angenommen?,'" Q.u.S., B, vol. 2, 1933, pp. 369-387) has amplified
this interpretation that the notion of the Dedekind Cut is already
implicit in early Greek mathematics, by relating it to the "method
of exhaustion." Since Definition V.5 and the "method of exhaus-
tion" are both generally attributed to Eudoxus,.Becker suggests
that it is he who is behind the development of this (rather too)
sophisticated idea. :

894 sequence (x ) is Cauchy if, given any e > 0, there

exists an integer N, such that Ixn —-xml <e for all n,m > N.
The assertion.that the sequence (xn) converges means that there

exists an x with the property that, given any € > 0, there
exists an integer N, such that lxn - x| <e for all =n > N.

90This criterion is used in a considerable number of the
arguments of Book V, e.g., V.4, 7, 9, 13, 16, etc. (cf., EE, vol.
2, pp. 112-186).

9l1pid., p. 187.

92Tbid., p. 190.

937bid., p. 117.

9%This is Definition V.3 (ibid., p. 114).







