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MONOTONIC PROPERTIES OF SOME SPECTRAL RESOLVENTS
I. Erdelyi

The spectral resolvent concept for a closed linear operator
T on a complex Banach space X was introduced in [2] and further
developed in [3] and [7].

Since a spectral resolvent E varies between the two extreme
values E(#) = {0} and E(G) = X for G (open) D o(T), the
question arises whether such variation obeys any monotonic rule.

It would certainly be useful to know that by expanding an open set
G we can increase the corresponding subspace E(G). It was proved
in [7] that if a bounded linear operator T has a spectral resol-
vent E then T has a maximal spectral resolvent Enﬁ in the sense

that for any open set G C C and all spectral resolvents E of T,

E(G) C Em(G) = XT(E).

This maximal spectral resolvent XT’ originally defined

under the name of spectral maximal space [4], is monotonic in the

broader sense that for any pair of closed sets Fl, F2 with Fl

CF,, we have XT(Fl) C XT(F2)' We have no means of deriving a
general monotonic property such as 6 c6,= E(Gl) c E(GQ),

G and

which may not be valid for any type of open sets Gl" 5

every spectral resolvent E.

In this paper we shall examine two cases in which monotonic
properties do hold for spectral resolvents. Two types of open
sets will be considered and when necessary, restrictions on the
ranges of E will have to be imposed.

Given a Banach space X over, the field C of complex num-
bers, we denote the Banach algebra of bounded linear operators on
X by B(X). For a set SCC, we denote by S the closure, S°
the complement and cov(S) the family of all finite open covers
of 8. G stands for the family of all open subsets of (. For
T € B(X), we use the notations o(T), p(T) and R(+*;T) for the
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spectrum, the resolvent set and the vesolvent operator, respec-
tively. We denote by p _(T) the unbounded component of p(T).

For x € X, OT(X) is the local spectrum, pT(x) is the local
resolvent set and x denotes the local resolvent operator, char-
acterized by the property (A-T)X(A) = x for all A€ pT(x).

The existence of OT(x), pT(x) and X 1is subjected to the

single valued extension property (abbreviated SVEP) of the given
T. We denote by Inv(T) the family of invariant subspaces under
T and we write T|Y for the restriction of T to Y € Inv(T).

Let T € B(X) be given throughout this paper.
Definition 1 [2,3]. A spectral decomposition of X by T is a
finite system {(Gi,Yi)}CZG><InV(T) with the following properties:
(i) {Gi} € cov[o(T)];
(i1) X = ZiYi;__
(iii) o(r|y,) € G, for all i.
Definition 2 [2,3]. A mapping E : G » Inv(T) is called a spec-
tral resolvent of T if it verifies the following conditions:

(1) E(#) = {o};
(I1) for every {Gi} C covlo(T)1, {(Gi,E(Gi))} is a spec-

tral decomposition of X by T.
The proof of the SVEP for operators which have a spectral
resolvent is given in [3]., For T having the SVEP and S C C,

we denote the linear manifold in X

XT(S) = {xex: on{x) C st.

Definition 3 [8]. Y € Inv(T) is said to be a T-absorbent space
if for every y € Y and all A € o(T|Y), the equation

(A-T)x =y
has all solutions (if any) =x in Y.
Some preliminary properties of the T-absorbent spaces will be

needed in the subsequent theory. Bartle and Kariotis [1] called
an invariant subspace Y a Vv-space if

o(T|Y) C o(T).

The following property is well-known.
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Proposition 4 [6]. Given T, for every Y € Inv(T) the follow-
ing assertions are equivalent:

o(T|Y) C o(T);
R(A3T)Y C Y for all A € p(T).

It is easy to see that every T-absorbent space Y is a v-
space for T. For if O(TIY) ¢ o(T) then there is a y € Y such
that R(MT)y € Y for some A € p(T) N G(TIY). But then the
equation

(A-T)x = y
has a solution
X = RIT)y €Y
which contradicts the definition of Y.
Thus, by a result of Jafarian [5], if {(Gi’Yi)} is a spec-

tral decomposition of X by T such that the Yi's are T-

absorbent spaces (or more generally v-spaces), then

(1) o(T) = U O(TIYi)
1

Lemma 5. Let {(Gi,Yi)} be a spectral decomposition of X

12 Y2. Then

i=1,2
by T in terms of T-absorbent spaces Y

o(t|y,ny,) = o(T[Y)) No(T]y,).

Proof. Let y & Yl N Y2 = Y be arbitrary. Since Yl and Y2

are V-spaces, Proposition 4 implies
(2) R(A3T)y € Y for all X € p(T).

For A€ p(TlYl) n p(T]Y2), (1) implies that X € o(T) and in

view of (2), we have

(3) R(A;TlYl)y = [R(A;T)[Yl]y - R(A3T)y € Y.

For X € p(T[Yl) N 0(T|Y2), since Y_ is T-absorbent,

2
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(A-T)R(A;lel)y =y

implies that

ROGT]Y Dy € ¥,,.

On the other hand, R(A;TIYl)y € Yl and hence

(4) R(A;TlYl)y € Y.

Thus, by (3) and (4),
R(A;T[Yl)y CY forall A€ p(T|Y))

and hence Proposition 4 applied to Y € Inv(TIYl), gives
o(T|Y) C G(T[Yl).

By symmetry, O(TIY)‘C O(T1Y2) and the proof is concluded. f

The technical difficulty in treating the monotony problem in
the general case, lies in the wide variety of shapes and topo-
logical structures of open sets. The two cases under considera-
tion here, open disks and complements of compact disks can be
extended immediately by some continuous deformations to more
general types of open sets.

Theorem 6. Let T have a spectral resolvent E and let G = KC,
where K is any compact disk in C. Then G, € G and G C G

1 1
imply E(G) C E(G,).

Proof. To avoid repetitions, we divide the proof in three
parts.

Part A. There is an open set G2 such that

(5) GNG.=¢g and o(T) C@

U
2 G2'

1

Then {(Gi’E(Gi))}i-l , is a spectral decomposition of X by T.
et ]
Let x € E(G) be arbitrary and let

X =y, ty, with Y; € E(Gi)’ i=1,2
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be a representation of x. We have

ap(x) C o[T|E(G)1C G and op(y,) ColT|E(G)IC 6, i=1,2.
a 1 1

Also,
= -
OT(yl) OT(x y2) C OT(x) U GT(YQ) cC Gy G2

and hence

CG N(GUG) =GU (G NG
oT(yl) G, (G G2) G (Gl G2).

Thus, GT(yl) is the disjoint union of the spectral sets

= NG
o} oT(yl) G, ©

= N ({(GNGC
1 GT(yl) (Gl G2).

2

Part B. Since GT(X) and O_ are compact sets contained in

1
G, by (5) there is a connected open set V such that

NG = U C
v G2 ¢ and OT(x) Gl V.

The set
C
=vVN U
W=V [oT(x) ol] - pT(x) N pT(yl) N pT(yQ)

and hence the following equation is defined on W:

®(X) = §1(A) + ¥,

Let I be a closed finite system of positively oriented reactifi-

able Jordan arcs surrounding UT(X)LJGl and contained in W. We have

5,000\ = J 5,00

omix = f R(X;T)xdk.= J x(A)dA = J
C T T r

¥.(dx + j
T 1

where C = {A : |A[ = ITI + l}.

There are functions fi : W~ E(Gi), i =1,2 such that

5,00 = £,(00) + £,(0) on W

Then, a function g : W~ E(Gl) N B(Gz) is defined by

e px

tive
in -

(M)d;

roof
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