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INVOLUTIVITY OF CONSERVATION LAWS FOR A FLUID
OF FINITE DEPTH AND BENJAMIN-ONO EQUATIONS

Boris Kupershmidt*

We prove that all conservation laws of the Finite Depth (FD)
and Benjamin-Ono (B-0) equations commute. Furthermore we prove
that the system of integrals of the FD equation is complete and
that the system of integrals of KdV equation is also complete (the
latter was not known).

I. INTRODUCTION
The equation describing the propagation of long waves in a
stratified fluid layer of finite depth is written in a dimension-

less form as [1], [2]

u, = 2uuX + T(uxx)’ (1.1)

where the nonlocal operator T is defined by

(TE)(x) = - —i§fpfm [coth ﬂigiél-- sgn(x-£)1E(E)dE  (1.2)
2\ —c0

and the physical variables in (1.1) have been rescaled for conven-
ience.

Equation (1.1) has a number of remarkable properties: (1) If
A=+ O and 3 = d/dx, we consider T as a formal power series in
A, then we have [1], [6]

A3, -Ad
_ syl e T+te -2,~1 _ 3 2
T = A ~————-—em—e_xa - X7 T =g+ 000, (1.3)
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Thus (1.1) tends to the KdV equation when A =+ 0, (2) Equation
(1.1) has an infinite number of integrals [1]; (3) If we rescale
u in (1.1) and make A go to « then (1.1) tends to

v, = v+ H(vxx), v(x,t) = aulx,At), (1.4)

where H is the Hilbert transform

(HE) (x) = %Pr -E%)—dg. (1.5)

Equation (1.4) is the B-0 equation. This equation also has an
infinite number of integrals which come from the limit of FD-
integrals as A > «, In what follows we shall look at the FD-
equation as a Hamiltonian system and all the statements (except
completeness) can automatically be carried over to the B-O-case
which we leave here for good, (4) Equation (1.1) is Hamiltonian
[7], i.e. can be rewritten as

u, = P

_ 3
- HS’ H, = 2u” + 3uT(ux). (1.6)

S
Su 3

1]

Therefore one can ask whether the Poisson brackets

§H S8H
m n

) = gy s (1.7)

are trivial (i.e. do they belong to the image of the operator 9)
or not. In the latter case we would have new integrals, {Hn,Hm},

because the Poisson bracket of integrals is again an integral; —
this follows from the Hamiltonian property. It is the purpose of
this paper to prove that all the integrals Hn of equation (1.1)

commute, and that they form a complete family, i.e. there are no
other independent integrals of equation (1.1) which are regular in
X. For various other topics concerning the solutions of equation
(1.1) and related equations the reader can consult [11, [3]-[5].

II. INFEGRALS AND THEIR PROPERTIES

If one considers equation (1.1) as regular deformation with
parameter )X of the KdV equation

u, = 2uu_ + L (2.1)

u
t X 3 Txxx’?
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then it is an ideologically important problem to find how facts
and constructions concerning the KdV equation (2.1) carry over to
the "deformed" FD-equation (1.1).  An initial step in this direc-
tion was made in [6]1; from that paper we need the following fact:
if '

q 2
q, = —5 [2eq - (1-2)(®*41)] + T(q ) + &g T(q)) (2.2)

2\
then

A

(]:_E)(62A€q_l)] - eq + EAT(qX) (2.3)

u = ~ji§ [2xeq
2\

is a solution of (1.1). Note that whemn A - 0, equations (2.2)
and (2.3) tend to

22 1 t
A 2qx(q e7q") + 3 Yxxx? (2.2')
q -eq - e%q’ (2.3")

u

respectively, 1.e. the Gardner transformation for KdV.

Now q in (2.2) is conservation law, i.e. q = 3(eee)s

therefore inverting (2.3) in the ring A[[A]11[[e]] of formal
power series in e, where A denotes the ring of polynomials in
variables (u,ux,uXX,...), we get

q= ) e, (2.14)

where the Hn are conservation laws of the FD-equation. Note

that Hn € A[[A]] and that we can write
H = )h .\, h_.€A, (2.5)

To understand the structure of the Hn's it is helpful to

look at the KdV equation (2.1) first. Again q is a conservation
law (c.%.) in (2.2'); hence inverting (2.3') one gets

o
Q=) enhn, h €A, (2.u")
n=0




128 Involutivity of Conservation Laws

where h_ in (2.4') is equal to h in (2.5).
n n,0

We observe that the map (2.3') is homogeneous if the follow-
ing weights are prescribed: w(e) = -1, w(u) = w(q) = 2, w(d)

= 1 (therefore w(q(n)) =n + 2, where q(n) = 3"(q)). Thus
— N~
w(hn) =n + 2. (2.6")
In the same manner one can court the map (2.3): w(u(n))

= w(q(n)) =n+ 2, w(e) =w()) = -1. Then

w(Hn) =n + 2, w(hn,i) =n+ i+ 2. (2.6)

At this point some notations will be useful. If f,g €A,
(1 (n) ( (m)
u ), LU ),

say f = f(u,u~’,..., g = glu,u™",.. we write:
fnv0 if f=29g; and f~g if £f(u,0,...,0) = g(u,0,...,0).

Proposition 2.7. h2n+l v 0.

nggff Write (2.4') as q = q* + q where q+ = z€2nh2n,

q =) 2n+lh2n+l and substitute this into (2.3'). Then the part
that is odd in € yields q - eq; - 2€2q+q_ =0, or

q” = ~(26)719 gn(1-2¢%").

Proposition 2.8, If £ v~ 0 then f =~ 0. This is evident.

Proposition 2.8. h

ont1 ~ 0> By, # 0.

Proof. The first part follows from (2.7), (2.8). Rewriting
(2.3") as

um g - £2q° (2.10)

1/2 2n n+l

» .

1= 2 ceu s all the ¢
n=0 N n

are different from zero since they are binomial coefficients.

Thus

we get g & (282)_1[1~(1-482u)

n+l
h, ~cu '™, c #0. (2.11)

To treat the completeness problem for the KdV equation we
need some extra information about the polynomials hn' Note that
substitution of (2.4') into (2.3') yields
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h,=u, h, =u~’, h .= ) hh + dh
n m s+
n+m=s

1» s20. (2.12)

Let Qi(f) denote the part of degree 1 in a polynomial
feaA.

el AL _ (n)
Proposition 2.13. zo(hn) = 0; ll(hn) =u .

2, ) (-1)5u(8)2, (2.14)

Proof. The first two formulae follow directly from (2.12), which

2.(h )2 (h) = ) u(n)u(m).‘

also yields 2&,.(h )
Y 2" 2sts n+;=28 1'"n""1"m n+i=2s

Therefore

8 k3 (n). (m)
= (h, ) =) (-8)° —=~ ) uu
. du T2 2s+2 i 8u(k) = 2s

b

2s 2s
9 z (_a)ku(Qs—k) - 2u(28) (—l)k - 2u(28)
k=0 k=0

which gives (2.14).
(1) (n)

Now let f = f(x,u,u seesall ) be a function: polynomial
or rational or algebraic ... or smooth. We shall write f£(< n+l)

to indicate that f does not depend upon u(m) with m > n. Then
Proposition 2.13 yields
Lemma 2.15. h "N (—l)Qu(S)2 + g (< s), with some g_ € A.
————— 2542 ] ? S
Theorem 2.16. Let ¥F(< n{l) be a conservation law for KdV equa-
- nt
tion (2.1). Then £ ~ ZodShQS, d being constants. In other

sS=

words, there are no c.%-s of the KAV equation besides the h 's.
This is a particular case of the following

X u(k)2

Theorem 2.17. Let k > 0 and H = (-1) /2 + (< k). Denote

by Xy the evolution equation (field).

U = 38H, OH = >—. (2.18)

2
Let f(<m) be an integral of (2.18), m > 0. Then £ = du(m)

+ (< m) with some constant d.
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Corollary 2.17'. There are no new c.f.-s for any equation in
either the KAV or MKdV hierarchies-only those already known.

Proof of Theorem 2.17. If f is a c.%. of (2.18) then {H,f}
= XH(f) N~ 0, which is equivalent to S{H,f}‘= 0. We need the

following formula ((7.14), Ch. I [71)

§{H,£} = Xy (8F) - X (8H), (2.19)

which now turns into
XH(Gf) = Xf(SH) (2.20)

u(2k+2m) terms in the left and right

(s)

We want to compare the

sides of (2.20). We write BS = 3/3u and remark that (obvi-

ously)
n _ n | N~0
0= 1 (3]0, (2.0
Ol
2m
Then x.(6F) = ¢ 5[’ 4 (< 2kc1)71+ 9 6F so
H s=0 - S
3 pesong(8E) = 8, | OF. (2.22)
On the other hand
2k
K (SH) = ] 35(6£) » 3_[u'P) + (< 2k-2)]
s=0 s
2k-2
= %% 1 Y 0%ere o (< 2%-2),
s=0
_ o 2ktl 2k+l 5 2kt1l-a
0 Bomearg(O) = Bppyp 7 TOE 2 T ()9 domi2k-oOFLE 2M)

= (o = 2k+1)3, . 8Ff + (o = 2k)(2k+1)aa 6f Comparing this with

(2.22) we arrive at

93, 6f = 0, (2.23)
2m

m k m. 2 '
But 93, 8f = 3 L 9 (-1)Y 3, f=(-1) 9_f, therefore (2.23) can
2m 5 2m - n k m
be read as Bmf = 2d(-1) = const. O
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Now we are prepared to analyze the FD-integrals Hn.

Proposition 2.24. If f,g € A[[A]]1 then {f,g} ~ o.

Proof. {f,g} = §f+38g and 38g =~ 0.

Lemma 2.24. Let f € A[[A]]. If f~ 0 and f is c.f. of the
FD equation, then £ "~ 0.

Corollary 2.25. All the integrals Hn commute.

[eo) .

Proof of the Lemma 2.24. Let f = I fikl. If we prove that
% i i=0

fO Vv 0 then £V A Ofi+lkl and we can repeat the argument.
1=

Since fo is a c.f. for the KdV equation and fo

fO N0 by (2.11) and (2.16).

~ 0, then

Remark 2.26. As we mentioned before, from the corollary 2.25
written in .the form

J {Hn,Hm}dx 0, (2.27)

it follows that formula (2.27) is true also for the c.%.-s of
the B-O equation.

Theorem 2.28. Let f € A[[Al]l. Suppose that f is a c.%. of
the TD equation. Then £ belongs to the linear space generated

]
by the H2n S.

o] .
Proof. Let £ = I fikl. It's enough to prove that we can find

i=0
a linear combination EckH such that (f—chHQk) € o(M\): then

2k
we can repeat the procedure. For this note that fO is as c.%.

1 ny R i =
for the K4V equation, so fo z Ckh2k Since h2k,0 th, so

z CkHQk provides the desired combination. a

Remark 2.29. Of course, the same proof goes through for all
higher Fd equations

6Hn
U.t =2 _Orl:l— s (2-30)

because they are regular deformations of the higher KdV equations
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Ghn
u_t =9 ST (2.31)

Remark 2.30. In the same manner as above, one can easily prove
both commutativity and completeness properties for the Benney's
long wave equations [7]

An = aAn+l + nAn_lBAO;

where we have infinite number of functions An(x,t), n=0,1,... .
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