SOME OBSERVATIONS ON SURFACES WITH NULL-PROJECTIVE-CURVATURE

Froim Marcus

It is proved that only for surfaces with null projective curvature there exist conjugate nets whose curves are normal geodesics. The system determining minimal-projective surfaces with K = H = 0 is obtained and so are the invariants of the $\rm R_0$ surfaces which admit $\rm \infty^3$ projective deformations and are minimal-projective.

§1. E. Cartan [1] proved the existence of surfaces for which there exist conjugate nets such that

$$\overline{h} = h; \overline{k} = k,$$
 (1.1)

(h, k, \overline{h} , \overline{k} , being, respectively, the point- and tangential invariants of the corresponding Laplace equation) and called them E-surfaces and E-nets. Let S be a non-ruled surface referred to its asymptotes, determined near a homography by the complete integrable system

$$x_{uu} = \theta_u x_u + \beta x_v + p_{11} x; \quad x_{vv} = \gamma x_u + \theta_v x_v + p_{22} x.$$
 (1.2)

According to Cartan an E-surface is characterized by the conditions:

$$\left(\frac{\beta}{\sigma}\right)_{u} = \left(\gamma\sigma\right)_{v}; \quad \left(\gamma\sqrt{\sigma}\right)_{u} = \left(\frac{\beta}{\sqrt{\sigma}}\right)_{v},$$
 (1.3)

 $\frac{\beta du^3 + \gamma dv^3}{2 du \ dv}$ being Fubini's projective linear element and

$$dv^2 - \sigma^2 du^2 = 0,$$
 (1.4)

the corresponding net.

Let

$$F_2 = 2a_{12} dudv; \quad F_3 = a_{12} (\beta du^3 + \gamma dv^3), \quad (1.5)$$

where

$$\omega_{12}^2 = (x, x_u, x_v, x_{uv}); \quad \omega = \text{sign}(x, x_u, x_v, x_{uv}), \quad (1.6)$$

and

$$|a_{12}| = e^{\theta},$$
 (1.7)

the first and second differential forms of Fubini [2,2']. According to him [2], the pangeodesics of a surface are the extremals of the integral

$$I_2 = \int \frac{F_3}{F_2}$$
, (1.8)

and their equation is

$$2u'' \frac{\gamma + \beta u'^3}{u'^3} = 2\left(\frac{\gamma_u}{u'} - \beta_v u'\right) + \left(\frac{\gamma_v}{u'^2} - \beta u'^2\right); \quad u' = \frac{du}{dv}. \quad (1.9)$$

We characterize the E-surfaces and the nets by the following results (see [3]):

- If the curves of a conjugate net N of a surface S are pangeodesics, S is a E-surface and N a E-net. Only for E-surfaces there exist conjugate nets whose
- curves are pangeodesics.
- In [4], Fubini adopted his normal differential form:

$$\phi_2 = 2\beta\gamma dudv; \quad \beta\gamma = e^{\theta},$$
 (2.1)

¹It was shown in [3] that A. Terracini obtained the same conditions (1.3) ten years earlier than Cartan, when studying the applicability of the congruences generated by the tangents of a conjugate net. Accordingly, we will call the E-surfaces "Terracini-Cartan surfaces."

as a linear element of a metric geometry of S which is invariant for collineations (for correlations and projective deformations). In this geometry, the integral

$$I_{1} = \int \sqrt{\phi_{2}}, \qquad (2.2)$$

is invariant and intrinsical and is called Fubini's integral invariant (see [5]). Fubini defined it as a projective notion of the length of an arc of a surface, and considered the geodesics of the metric defined by ϕ_2 . The latter are defined by

$$\delta \left(\sqrt{\phi_2} = 0. \right) \tag{2.3}$$

They are called projective or normal geodesics, and their equation is:

$$v'' = \theta_u v' - \theta_v v'^2; \quad \theta = \ln \beta \gamma.$$
 (2.4)

The curvature of the normal form ϕ_2 is called the projective or normal curvature of the surface, and is given by

$$K = -\frac{1}{\beta \gamma} \frac{\partial^2 \log |\beta \gamma|}{\partial u \partial v}. \qquad (2.5)$$

Besides K, the expression

$$H = -\frac{1}{\beta \gamma} \frac{\partial^2 \log(\beta; \gamma)}{\partial u \partial v}, \qquad (2.6)$$

is also important in the theory of surfaces, as H=0 characterizes isothermo-asymptotic surfaces (see [2']). K and H are finite invariants of a non-ruled surface.

§3. Suppose now that the curves of the net

$$dv^2 - \tau^2 du^2 = 0; \quad \tau = \tau(u,v)$$
 (3.1)

are normal geodesics. Then it follows from (2.4) that

$$\tau_{u} + \tau \tau_{v} = \theta_{u} \tau - \theta_{v} \tau^{2}; \quad \tau_{u} = \tau \tau_{v} - \theta_{u} \tau - \theta_{v} \tau^{2}.$$
 (3.2)

Hence

$$(\ln \tau)_{u} = \theta_{u}; \quad (\ln \tau)_{v} = -\theta_{v}. \tag{3.3}$$

Therefore

$$\theta_{uv} = (\ell_n \beta \gamma)_{uv} = 0, \qquad (3.4)$$

and the projective curvature $\,K\,$ vanishes. Conversely, suppose that $\,K\,=\,0\,$; in that case the transformation

$$\overline{u} = \alpha(u); \quad \overline{v} = \delta(v),$$
 (3.5)

yields

$$\beta \gamma = 1, \qquad (3.6)$$

i.e. $a_{12} = 1$.

It is seen from (2.4) that for S there exists a simple infinite family of conjugate nets, whose curves are normal geodesics, given by

$$dv^2 - c^2 du^2 = 0$$
, (c = const.). (3.7)

Accordingly, we arrive at the conclusion that: Only for surfaces with null normal curvature, there exist conjugate nets whose curves are projective geodesics.

According to Cartan [6], there always exist surfaces which admit a given quadratic form. They depend on five arbitrary functions of an argument. Therefore, surfaces with K=0 exist and depend as above.²

§4. Surfaces with k = const., and H = 0 play an important role in projective differential geometry. In fact, according to Cartan, these surfaces admit ∞^3 projective deformations. (They are the theme of §69, pp. 364-383, in [2]). Fubini and Čech considered first the case K = H = 0. It is shown that it is possible to choose the parameters u, v such that

²The same result was obtained by T. Mihailescu [7], but in the absence of references it is very difficult for a non-specialist reader to differentiate between it and those of Fubini and Cartan, whose names are not mentioned.

$$\beta = \sqrt{V/U}; \quad \gamma = \sqrt{U/V} \tag{4.1}$$

where

$$U = au^3 + b_1u^2 + c_1u + d_1$$
; $V = av^3 + b_2v + c_2v + d_2$, (4.2)

a, b_i , c_i , d_i being arbitrary constants — provided U and V are not identically zero. Formulas for p_{11} and p_{22} are also available, but are fairly complicated. None is available for L or M. Let

$$L_{v} + \gamma \beta_{11} + 2\beta \gamma_{11} = 0; M_{11} + \beta \gamma_{v} + 2\gamma \beta_{v},$$
 (4.3)

$$\beta M_{v} + 2M\beta_{v} + \beta_{vvv} = \gamma L_{u} + 2L\gamma_{u} + \gamma_{uuu}, \qquad (4.3')$$

be the integrability conditions of system (1.2), where

$$L = \theta_{uu} - \frac{1}{2} \theta_{u}^{2} - \beta \theta_{v} - \beta_{v} - 2p_{11}; M = \theta_{vv} - \frac{1}{2} \theta_{v}^{2} - \gamma \theta_{u} - \gamma_{u} - 2p_{22}.(4.4)$$

Accordint to 0. Mayer [8] S is a minimal-projective surface if

$$\beta M_v + 2M\beta_v + \beta_{vvv} = 0$$
, $(\gamma L_u + 2L\gamma_u + \gamma_{uuu} = 0)$. (4.5)

As the functions U and V given by (4.2) are sufficiently general, it may be possible to obtain values for them such that the corresponding surfaces would be minimal-projective. From (4.3), noting that $\beta\gamma = 1$, there follows:

$$M = \frac{1}{2} u \frac{V'}{V} + V'; \quad L = \frac{1}{2} v \frac{U'}{U} + U'; \quad (4.6)$$

with V* = V*(v), U* = U*(u). From (4.5), (4.1) and (4.6), we obtain

$$V^{1/2}V^*$$
' + $\frac{V'}{V^{1/2}}V^*$ + $\frac{u}{V^{3/2}}V''$ + $\frac{1}{8V^{5/2}}(2V^2V'''-6VV'V''+3V'^3) = 0.(4.7)$

Operating with $\partial/\partial u$, we obtain.

$$V^{\dagger\dagger} = 0. \tag{4.8}$$

whence

$$V = c_2 V + d_2.$$
 (4.9)

In the same way there follows

$$U = c_1 u + d_1.$$
 (4.10)

Consequently

$$M = -\frac{c_2 u}{2(c_2 v + d_2)} + V^*; \quad L = -\frac{c_1 v}{2(c_1 u + d_1)} + U^*;$$

$$U^* = \frac{c_1^*}{c_1 u + d_1} + \frac{3}{8} \frac{c_1^2}{(c_1 u + d_1)^2}; \quad V^* = \frac{c_2^*}{c_2 v + d_2} + \frac{3}{8} \frac{c_2^2}{(c_2 v + d_2)^2}.$$
(4.11)

Without loss of generality, we may suppose $d_1 = d_2 = 0$. Then,

$$\beta = \alpha \sqrt{v/u}; \quad \gamma = \frac{1}{\alpha} \sqrt{u/v}; \quad \theta = 0;$$

$$U^* = \frac{c_1^*}{c_1^u} + \frac{3}{8u^2}; \quad V^* = \frac{c_2^*}{c_2^v} + \frac{3}{8v^2}; \quad \alpha \neq 0,$$
(4.12)

$$M = -\frac{u}{2v} + \frac{3}{8v^2} + \frac{C_2^*}{c_2^*};$$

$$L = -\frac{v}{2u} + \frac{3}{8u^2} + \frac{C_1^*}{c_1^*u}; \quad (\alpha, C_1^*, C_2^* = \text{const.}),$$
(4.12')

and

$$2p_{11} = -L - \beta_{v} = \frac{v}{2u} - \frac{3}{8u^{2}} - \frac{c_{1}^{*}}{c_{1}^{u}} - \frac{\alpha}{2\sqrt{uv}},$$

$$2p_{22} = -M - \gamma_{u} = \frac{u}{2v} - \frac{3}{8v^{2}} - \frac{c_{2}^{*}}{c_{2}^{v}} - \frac{1}{2\alpha\sqrt{uv}},$$
(4.12")

For $C_1^* = C_2^* = 0$, the surfaces admit ∞^1 projective deformations. For $C_1^* = C_2^* = 0$ and fixed α_1 , the surfaces are projective-undeformable. For $\alpha = 1$, there follows from (4.12):

$$\beta_{v} = \gamma_{u} \tag{4.13}$$

and S is an R surface of Tzitzeica-Demoulin.

§5. S is an R_0 -surface if (see [2], T.1, p. 359)

$$H \pm K = 0.$$
 (5.1)

In such a case we can obtain

$$\phi_2 = 2\gamma du dv; \quad \phi_3 = \gamma du^3 + \gamma^2 dv^3,$$
 (5.2)

or

$$\phi_2 = 2\beta dudv; \quad \phi_3 = \beta^2 dv^3 + \beta dv^3.$$
 (5.2')

In §70, R_0 -surfaces admitting ∞^3 deformations are considered. Supposing the first case, there results

$$\gamma = UV$$
, $U = U(u)$, $V = V(v)$. (5.3)

whence $K = \frac{\partial^2 \log \gamma}{\partial u \partial v} = 0$, i.e. the projective curvature of these surfaces R_0 is null.

These R_0 -surfaces certainly include some minimal-projective ones. To the best of our knowledge, these were not the object of any study. From (4.3) there follows:

$$M = -V' \int U du + V*(v); L = -2U' \int V du + U*(u),$$
 (5.4)

and from (4.5), noting that UV $\neq 0$, we obtain

$$V^{ii} = V^{*i} = 0. (5.5)$$

whence

$$V = 2av + b_1; V = b_2.$$
 (5.6)

From (4.5), noting that $\gamma L_u + 2L\gamma_u + \gamma_{uuu} = 0$, there results

$$U = \sqrt[3]{3}(cu+c_1)^{1/3}, \quad U^{*!} + 2U^{*}\frac{U^{!}}{U} + \frac{U^{!"}}{U} = 0.$$
 (5.7)

Hence

$$U^* = \frac{C^*}{\sqrt[3]{9}(cu+c_1)^{2/3}} + \frac{5c^2}{18(cu+c_1)^2},$$
 (5.8)

and

$$M = -\frac{3\sqrt[3]{a}}{2c} (cu+c_1)^{4/3} + b_2; \quad L = -\frac{2c\sqrt[3]{3}(av^2+b_1v+c_2)}{3(cu+c_1)^{2/3}} + U*. (5.9)$$

Therefore

$$\beta = 1; \ \gamma = \sqrt[3]{c}(cu+c_1)^{1/3}(2av+b_1); \ 2p_{11} = -L; \ 2p_{22} = -M - \frac{\sqrt[3]{3}}{3} \frac{c(2av+b_1)}{(cu+c_1)^{2/3}}.$$
(5.10)

Replacement of γ by β evidently yields another class of minimal-projective R₀-surfaces.

REFERENCES

- [1] Cartan, E. (1944). "Sur une classe de surfaces apparentées aux surfaces R etc.". Bull. des Sciences Mathém., 41-50.
- Fubini, G., and Cech, E. (1926). Geometria Proiettivodifferenziale T.1. N. Zanichelli, Bologna.
- [2'] Fugini, G., and Cech, E. (1930). Introduction a la géométrie projective différentielle. Gauthier-Villars, Paris.
- [3] Marcus, F. (1957). "Une nouvelle caractérisation des réseaux et surfaces E de Cartan." Czechoslovak Math. Journal T. 7 (82), Praga.
- [4] Fubini, G. (1918). "Fondamenti della geometria-proiettivodifferenziale di una superficie." Atti della Reale Acad.
- Scienze di Torino, Vol. 53.
 Wilczynski, E. J. (1922). "Some generalization of geodesics."
 Amer. Math. Soc., Trans. Vol. 23, 223-239.
 Cartan, E. (1920). "Sur la déformation projective des surfaces." Ann. Ec. Normale, t. 37, 259-356.
- Miháilescu, T. "Suprafețele de curbura proiectivă nulă." Studia Universitatum Victor Babes et Bolyai, Tomus 3, No. 3, Series I, Fasciculus l'Mathematica.
- Mayer, 0. (1932). "Contribution à l'étude des surfaces minima projectives." Bul. Sc. Math., T LVI, Paris, 146-169. 188-200.