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SOME FIXED POINT THEOREMS FOR CONVEX CONTRACTION
MAPPINGS AND CONVEX NONEXPANSIVE MAPPINGS (I)

Vasile I. Istratescu

0. INTRODUCTION

Let X Dbe a complete metric space with the metric d. In
the recent years, a great number of papers present generalizations
of the well-known Banach contraction principle. Sometimes, these
generalizations refer also to results containing the Schauder
fixed point theorem. The purpose of the present paper is to con-
sider a generalization of the Banach contraction principle by
introducing a "convexity condition." This condition can be
adapted for other classes of mappings, as we show in the last part
of the paper.

I. CONVEX CONTRACTION MAPPINGS OF ORDER 2
Let X be a complete metric space with the metric d.

Definition 1.1. A continuous mapping T : X + X is called a con-
vex contraction mapping of order 2 if there exist a, b in (0,1)
such that:

(1) a+b<1,

(2)  a(T’x,T?%) < ad(Tx,Ty) + bd(x,y).

Concerning this class of mappings, which obviously contains
the class of contraction mappings, we can prove the following
theorem.

Theorem 1.2. Any convex contraction mapping has a unique fixed
point.

Proof. Since the uniqueness is trivial, we prove only the exis-

tence. Let X, be an arbitrary but fixed point in X, and con-
o0

sider further the orbit of Xy i.e., the sequence (xn)o, where

xn+l = Txn, n=2~0,1,2,... . Let
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K = max(d(xO,TxO),d(Txo,szo)),

and thus for any m,

2 -
mtl 2 1 T2(m l)x ),

2m 2m m-1 2m-
<
a(T xo,T xo) < ad(T xO,T xo) + bd(T Xy 0

as well as

2m 2 2m-1 2(m-2)

XqsT m—lxo) < ad(T xo,T xo) + bd(Tz(m—l)x 2m~3x ).

T

From these we obtain the following inequalities:
2 3 2
(1) a(r XO’T xo)_i ad(TxO,T xo) + bd(xo,TxO) < K(atb),
3 L 2 3 2
(2) a(t xO,T XO) < ad(T xO,T xo) + bd(Txo,T xo)
< (aK+bK(a+b)) = K(atb),

(3) d(Tuxo,Tsxo) f_ad(Tsxo,TuxO) + bd(TQXO’T3XO) < aK(a+b)
+ bK(ath) = K(a+b)?,

An induction argument shows that

d(TmeO,T2m+le) < K(a+b)™,

and from these estimates we get easy that (xn) is a Cauchy
sequence. Indeed, for m < n,

m+lx0,Tm+2xo)%°"+d(Tn—lx

EXER fﬂK(a+b)m/2

n m m+1 n
T XO) < (T xO,T x0)~+d(T T xo)

m/2 +1

a(r™x 0°

+1/(1-(atb)).

O’
i_K(a+b)m/21~K(a+b)

Similar estimates we obtain in the case m = 2p + 1, n = 2%,

m=2p, n =28+ 1. Clearly, these imply that (xn) is a Cauchy

sequence. Let x* = lim X Since

1

\/ - n + ots
Tx* = 1im T XO = X¥

The existence of the fixed points is proved.

We give now an example to show that there exist mappings which
are convex contraction of order 2, but they are not contractions.
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Example l.3+. Let X =1[0,1] and T : X+ X defined by
% if x€ [o,%) = A,
Tx =
X . 1 _
T if Xe[E,l]—B.

One easily obtains
2
|1°% - %] < $1Tx - Ty],

and thus T is a convex contraction of order 2. From the form of
T, it is easy to see that it is not a contraction mapping.

We can consider now a more general family of mappings related
to the contraction mappings.

Definition 1.4. A continuous mapping T : X - X 1is said to be
convex contraction of order n if there exist positive constants
such that

agseeesd 1o
(1) ay + eee t a <L
(2) d(Tnx,Tny) s‘aod(x,y) + ald(Tx,Ty) + see

+ an_ld(Tn_lx,Tn—ly) hold for all x, y in X.

Theorem 1.2 can be extended to this class of mappings, and
since the proof is essentially the same, but with tedious calcu-
lations, we mention it only.

Theorem 1.5. Any convex contraction mapping of order n has a
unique fixed point.

As it is well known, some results about contraction mappings
were extended to a larger class of mappings, the so called con-
tractive mappings. We recall that a mapping S : X > X 1is called
contractive if the following inequality

d(8x,Sy) < d(x,y)
holds for all x #y in X.

We define now the corresponding class of mappings.

trhis example is due to R. Kannan.
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Definition 1.6. A continuous mapping T : X+ X is called convex

contractive of order 2 if there exist the constants 3, and a;

in (0,1), such that:
(L ag + a, = 1,
. a2 2 ’
(2) d&(T7%,T7y) < aod(x,y) + ald(Tx,Ty)

for all x#y in X.

A well known result of V. Nemytskii [7] states that if T is
a contractive mapping, defined on compact X, then there exist
fixed points for T. The following result is an extension of
Nemytskii's result for convex contractive mappings.

Theorem 1.7. Let T : X+ X be a convex contractive mapping of
order 2, and suppogse X <18 compact. Them T has a unique
Fflwed point.

Proof., Let x, be an arbitrary but fixed point of X and consi-

0

der the orbit of X, under T, i.e., the set (Tnxo):. From the

compactness of+ X, there follows the existence of a subsequence
(nk), such that
Dy

X% = 1im T xO.

From the continuity of T it follows that

n, +1

Tx% = 1im T Xys
2' . n+2

Tx* =1lim T k XO’
n, +3

TSX* = 1im T X Xy

Let us consider now the function

vix) = max(d(x,Tx),d(Tx,TQX)),

which is clearly a continuous function on X. Since T is con-
vex contractive of order 2, we obtain that v 1is nonincreasing
with respect to T, 1i.e.,

v(Tx) = v(x).
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Now the continuity of v and the above formulas for x¥%,

A} 2 \} 3 k) -
Txs, T x*, T x* give that

v(x®) = v(Tx®) = V(TQX*) = V(TSX*).

If we suppose that v(x*) is strictly positive, then the convex
contractive property of T implies that

v(x*) = v(T2x*) < v(x*).

Thus, we have v(x%) = 0, and this implies that x* 1is a fixed
point of T. The uniqueness is obvious, and the theorem is
proved.

Similarly, we can prove the following theorem which gener-
alizes a result of Edelstein [2].
Theorem 1.8. Let T : X+ X be a convex contractive mapping of
order 2, and suppose that any orbit (Tnx):, X € X, has a
limit point §&. Then & <is the unique fixed point of T.
Another possibility to obtain an extension of the Banach
existence theorem, for larger classes of mappings, is to localize

different conditions. The following definition introduces the
localization for the convex contraction mappings of order 2.

Definition 1.9. A continuous mapping T : X > X iscalled locally
convex contractive of infinite order if there exists a sequence of

fes]
positive numbers Cai), % a; < 1, such that for each x € X,

there exists an integer n = n(x) with the property

n-1 n-1
b3 y).

d(Tnx,Tny) f_aOd(x,y) + ald(Tx,Ty) + e + a AT ,T

n-1

Remark 1.10. If a_. = a i=0,1,2,..., then the above class

1. T1+i? _
of mappings reduces to the class defined by Sehgal [9].

An easy modification in the method of proof of Sehgal's
result gives us the following theorem.

Theorem 1.11. Any locally convex contraction mapping of infinite
order has a unique fixed point..
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II. TWO-SIDED CONVEX CONTRACTION MAPPINGS

We consider now another class of mappings, suggested by the
class of mappings satisfying the following condition: S is
defined on a complete metric space, and for some a and b in
(0,1), the following inequalities hold:

(L) a+b< 1,

(2) d(Tx,Ty) = ad(x,Tx) + bd(y,Ty).

We note that there exists a great number of papers in which
results about this class, or related to it, are presented. Our
class is considered in the following definitionm.

Definition 2.1. A continuous mapping T : X > X is said to be
‘two-sided convex contraction, provided that there exist a;s 3,
and bl, b
hold:

5 in (0,1), such that the following inequalities

(n a, ta,+ bl + b2 <1,

(2) d(T2x,T2y) f_aid(x,Tx) + a2d(Tx,T2x) + bld(y,Ty)
+ b2d(Ty,T2y), for all x #y in X.

A related class of mappings containing the convex contraction
mappings is considered in the following definition.

Definition 2.2. A continuous mapping T : X + X is said to be of
convex type 2, if there exist positive numbers Cp» 1o Aps 3ns

b., b

2,' such that the following inequalities hold:
<
(1) cg t ey ta ta,t bl + b2 1,

(2) d(T2x,T2y) = cod(x,y) + cld(Tx,Ty) + ald(x,Tx)
+ a,d(Tx,T%y) + b d(y,Ty) + b,d(Ty,T%).

l’

It is clear that this class of mappings contains the mappings
defined in Defiontions 1.1 and 2.1.

Concerning the fixed points for mappings considered in Defi-
nition 1.1 we can prove the following theorem.

Theorem 2.8. Any two-sided convex contraction mapping has a
unique fixed point.
Proof. Let x, be an arbitrary but fixed point in X, and con-

0

[e o]
sider the orbit of X, under T, 1.e., the set (Tnxo)o. We set

2
K = max(d(xO,Txo),d(TxO,T xo)).
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Then we have,
d(T2x Tsx ) < a d(x . ,Tx.) + a.d(Tx T2x )
0? 0" — 1 0’70 2 0’70

2 2 3
+ bld(T xO,TxO) + b2d(T xO,T XO)’.

and thus

a(1%x,,1%%) < ((a *a b )/(1-b))) « K.

09

Similarly,
ar% ,T¥% ) < ((a.+a+b )/(1-b.)) + K
02" %o/ T W187aTR, 2
as well as

a1, Tx,) < ((arayth))/(1-b))% K.

05
An induction argument gives that

Tm+l

m
a(r Xy

%) < ((aptayth )/ (1-b )" 2+

holds for all m > 4. From these estimates we obtain easy that
the sequence (Tnxo)z is a Cauchy sequence. Then clearly

x® = lim Tnxo is a fixed point for T. Since the uniqueness is
obvious, the theorem is proved.

Using a similar method we can prove the following result
about the class of mappings considered in the Definition 2.2.

Theorem 2.4. Any mapping which is of comvex type 2 has a unique
fixed point.

We note that we can consider another class of mappings con-
taining the mappings considered in the Definition 2.2 and related
to the so called "generalized contractions.'" For the reader's
convenience we recall that a mapping T : X > X 1is called gener-
alized contraction if there exists a function o(*) defined on
X, and with values in [0,1), such that for any x € X and all
y € X : :

d(Tx,Ty) < a(x)d(x,y).
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Our class is defined as follows.
Definition 2.5. A continuous mapping T : X + X is called a gen-
eralized convex type 2 if there exist positive functions co('),
Cl(°), al('), a2('), bl(°), b2(-), such that the following
inequalities hold:

(1) < (x) + c (x) +a, (x) + a, (x) +b (x) +b (x) <1,

(2) d(T x,T y) <ec (x)d(x ,¥) + ¢ (x)d(Tx Ty) + a (x)d(x,Tx)

+ a d(Tx T x) + b d(y,Ty) + b d(Ty,T y)

Clearly, thls class of mappings reduces, for an appropriate selec-
tion of the functions ci(-), ai(-) and bi(o), to the classes of

mappings considered above.

We close with some remarks about an extension of a result in
[8], concerning the fixed points of certain maps on an interval
into itself.

First, we note that the arguments in the proof of Theorem 1
in [8] give also the following result.

Theorem 2.6. Let T : [a,b]l + [a,b] with the property that
a,b € T([a,bl). Suppose that for some positive r,s, rts = 1 the
following inequality holds:

|Tx - Ty| < r|x - Tx| + s|y - Ty].
In this case, the midpoint of [a,bl <8 a fixed point of T.

The same argument (i.e. the use of the fact that [a,b] is a
subset which is convex, closed arnd bounded in an uniformly convex
space) permits to prove the following result.

Theorem 2.7. Let C be a compact, convex and closed subset of an
uniformly convex Banach space X. Suppose that T : C =+ C satis-
fies the following property:

ITx - Tyl < rlx - Txl + sjy - Tyl, r,s € [0,1], r+s =1,

for all %, y in C, and T has the property that 3C C T(C)
(oC is the boundary of C). Then T has a fized point in C.

It is not difficult to see that any point of C, which is
the midpoint of any diametral segment in C (the segment [x,y]
is called diametral if lx - yl = d&(C) = diam(C)), is a fixed
point for T.
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We conjecture that Theorem 2.7 is true without assumption on
compactness of C.

III. A FIXED POINT THEOREM FOR MAPPING DIMINISHING DIAMETERS

Let T : X > X be a contraction mapping. In this case it is
easy to see that for any bounded set M in X, we have the fol-
lowing relation d(TM) < kd(M), where TM = {Tx, x € M}.

We consider now a class of mappings related to this inequal-
ity.

Definition 3.1. A mapping T : X > X is said to be with locally
diminishing diameter property, if there exists k € (0,1) such
that for any bounded set M in X, there exists an integer

n = n(M), such that a(T™M) < kd(M). From just the definition,
it is clear that any contraction is a mapping with the property
stated in Definition 3.1. We show now that this class contains
the mappings considered in [9].

Indeed, let M be any bounded set in X, pick an x in M,
and let T : X > X with the property that there exists k€i(0,1),
and for each x € X there exists n = n(x) with the property
that for all y € X,

d(Tnx,Tny) < kd(x,y).
We choose an integer m such that 2k™ < 1.

Consider the following sequence of points

I
3

n, = n({x) = x

1 X); n, = n(xl) 2> x. =T “(x,)3 «ve

1 2 1

n
T m+l(

"
=}
~
»
Y
i

n X )yeun o
m)’

m m-1 xm+l

Now, if y, z are arbitrary points in M, we have,

nl+l . o‘+nm nl+. . l+nm nl+o . .+nm
a(r (y),T (z)) < T (y).x )

n tesedn nokeestm o
td(x ,T M(z)) < kd(T (y)x_ )

n_+e**+n

+ kd(x__ T 1 m'l(z))f_---ikmd(x,y) + KMA(x,2) < 2k"d(M),

-1
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and thus the assertion is proved.

For the fixed point theorem which follows, we suppose that
the space X is bounded.

Theorem 3.2. Let T : X + X with locally diminishing diameter
property. Then T has a wnique fixed point in X.

Proof. Since it is obvious that the set of fixed points of T
contains at most one point, we prove only the existence of fixed
points. To this end, we consider the following sequence of sets:

n+1l

R 2 T(X 2 T°(x) 2 19(x) 2 +++ 2 TM(x) 2 TH(x) D »eo

We show that lim d(T™(X)) = 0. We remark that our sequence con-
tains the following subsequence

X, =T ~(X), n, = n(Xx), X, =T (Xl)’ n, = n(Xl),...

Since we have the estimate
a(x ) < x'ax),
we obtain that lim d(Xm) = 0. Since the diameter of any set M

satisfies the relation d(M) = d(M) we get that lim a(Th(x)) = 0.
Thus by Cantor's theorem ‘

N THX) = (x%).
s}

We note also that we have the important relation: for each x,

1im TWx = x*, If T is supposed continuous, then from this rela-
tion we conclude that =x* 1is a fixed point of T.

We consider now the set

G = (x*,Tx*,sz*,...)

and from the above relation we get that it is closed and invariant
for T, and the image of G is exactly G. If G contains more
than one point, this is a contradiction. The theorem is proved.
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IV. CONVEX CONTRACTION MAPPINGS AND GENERALIZED METRIC SPACES

We consider the extended real line, which consists of all
points of the real line, and two points denoted by - and o,
with the usual order relation and -« < x <o,

Definition 4.1. A function 4 : X:2 > Re’ (Re the extended real

line) on an abstract set X 1is called a generalized metric, if
the following assertions hold:
(1) dlx,y) = d(y,x),
(2) d(x,y) =0 iff x =y,
(3) d(x,2z) < d(x,y) + d(y,z) (if d(x,y) = or d(y,z)
= @ then we consider that d(x,y) + d(y,z) = «).

Any set X, with a generalized metric, is called, after
Luxemburg, a generalized metric space. Of course we can define
in this setting all notions known in the theory of metric spaces.

The following result presents a fixed point theorem for a
class of mappings on generalized complete metric spaces.

Theorem 4.1. Let (x,d) be a generalized complete metric space
and T : X > X be a map with the following properties:

(1) d(sz,TQy) < ad(x,y) + ba(Tx,Ty), a + b < 1, =R,y in
X3
(2) for any point x € X, there exists an integer n,

such that d(Tnx,Tn+lx) and d(Tn+lx,Tn
than

(3) 2f Tx =%, Ty =y, then dx,y) < .
Then T has a unique fized point in X.

+2
xX) are less

Proof. Let X, be an arbitrary, but fixed point in X, and con-

sider the orbit of Xy under T. According to 2 there exists an

integer n such that

d(TnxO,Tn+le) < o, d(Tn+le,Tn+2xo) < o,

and thus, according to (1) we get that

n+l n

Hhe )+ pa(r™ e 1) < (arb)K

a2 7% ) < ad(Tx T

where
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K = max(d(T x Tn+lxo),d(Tn+le,Tn+2x0)).

03

We get further

n+3 n+i n+l n+2 n+2 n+3
a(T ,xO,T xo) < ad(T xO,T xo) + ba(T xO,T xo)
< aK + b(atb)X = (a+b)K
and
. T n+5 n+2 n+3 n+3 n+4
<
d(T xO,T xo) < ad(T xO,T xo) + ba(T xO,T ‘xo)

ala+h)K + b(a+b)K = (ath) K.

A

An induction argument shows that we have the following inequality:

n+mx ’Tn+m+le) f_(a+n)m—2K, m > 4.

a(T 0

From this estimate, it is clear that the sequence (Tnxo): is a
Cauchy sequence. Clearly x® = lim Tnx0 is a fixed point of T.
Now, the uniqueness follows from the properties 1 and 3 of the
mapping T.
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