LIBERTAS MATHEMATICA, VOL. 1, 1981 173

NOMENCLATURE

FLUID FLOW AND PRESSURE DISTRIBUTION
IN FERROMAGNETIC FILMS

Nicolae Tipei

nondimensional relationship, defined in (2)
integration constant, dimensionless

values of An defined in (23), dimensionless
function defined in A(l), dimensionless
function defined in A(l), dimensionless
function defined in A(l), dimensionless
constant defined in (31), dimensionless
nondimensional relationship, defined in (2)
integration constant, dimensionless

values of Bn defined in (23), dimensionless

bearing width (extent of the active zone); also ref-
erence length (for journal bearings b = rl), m

integration constant (j = 1,2), dimensionless
integration constant defined in (9), PamH_l
integration constant (j = 1,2), dimensionless
bearing radial clearance, m

coefficients, defined in (35), dimensionless

eccentricity (distance between journal and bearing
axes), m
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function defined in (35), i = 1,2, dimensionless

h/h, = dimensionless film thickness

2
dimensionless

Am_l

value of H at X. = X..,

1 1]
magnetic field strength,

(X)) Amt

value of H along le 3

boundary,
film thickness, m

minimum film thickness, m

indefinite integral, shown in (A.5)

first kind, first order, modified Bessel function,
dimensionless

integral defined in (3), HAQm—3(Pa)
subscript
subscript

second kind, first order, modified Bessel function,
dimensionless

u/ulH = nondimensional viscosity

-1

magnetization strength, ATm

-1

integral defined in (9), PamH

-1

at = 1,2), Pamd

-1

£ e %, 3
value of M le (3

value of M* for A = o,

number, maximum n, dimensionless

integer; also exponent or subscript, dimensionless
2 . .

ph2/6ulVb = dimensionless pressure

ambient pressure, dimensionless

dimnesionless hydrodynamic pressure

dimensionless magnetic pressure
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P? = value of P* at le (§ = 1,2), dimensionless
P% = dimensionless magnetic pressure in infinitely long
bearings

P%(X.) = value of P*(X_,\A/2) at the borders of the bearing,
dimensionless

P = pressure, Pa

q. = constants, 1 = 1,2, defined in (33), dimensionless
r, = journal radius, m

T = temperature, K

U = dimensionless function, defined in (15)

UO(Xl) = part of U, depending only on Xl coordinate,
dimensionless

U (X,) = function defined in (17), dimensionless

cn 1
Usn(Xl) = function defined in (17), dimensionless
V = reference velocity, ms_l
Vji = Vji/v’ nondimensional velocity at 2, =0 (3 = 1)
and x, = h (j = 2), parallel to s (i =1,2,3)
V? = v?/V = nondimensional value of v?
V¥, = values of V¥ for x, =0 (j =1) and x, = h (§=2)
Ji i 2 2
vji = velocity parallel to s axis, at x, = 0 (3= 1),
and %, = h (3 = 2), ms—l
& . . . -1 -1
vE = integral defined in (3), VAN “(ms ™)
V:j:i = vall—;tis ofl vl at X, = 0,] = 1 and Xy = h,j = 2,
VAN “(ms )
Xi = Xi/b = nondimensional coordinate, i = 1,3
X2 = x2/h2 = nondimensional coordinate
Xij = abscissas of boundaries of bearing's load carrying

zone (j = 1,2), dimensionless




176 Fluid Flow and Pressure Distribution in Ferromagnetic Films

o(T)

abscissa of the upstream (j = 1) and downstream
(j = 2) boundary of P#%*, dimensionless

coordinate parallel to the relative velocity of
solid surfaces, m

coordinate perpendicular to a solid surface, m

and X

1 o> M

coordinate perpendicular to x

function standing either for U __(X.)
. . cn 1
dimensionless

or Usn(xl),
constant defined in (33), dimensionless

constant defined in (33), dimensionless

constants defined in (33), i = 1,2, dimensionless
%-= bearing eccentricity ratio, dimensionless

angle measured from the centerline, dimensionless
bearing length-width (active zone extent) ratio;
bearing length-journal radius ratio, for journal
bearings, dimensionless

viscosity, Pas

4ﬂ010_7 = free space permeability, Hm'_l

reference viscosity under an applied magnetic field
H,Pas

variable defined in (31), dimensionless
variable defined in (20), dimensionless

value of El for Xl = le (7 = 1,2), dimensionless
. . 2-n,, n-2
temperature function shown in (7), A" Tm

2. _
constant value of o(T),A O™ 2




Nicolae Tipei 177

I. INTRODUCTION

Although the importance of ferromagnetic fluids in the areas
of sealing problems, reduction of friction, energy conversion,
levitation and other applications has often been emphasized, the
lubrication with ferrofluids has not been treated to any appreci-
able extent. Some work recently carried out at the GM Research
Laboratories has shown that bearings lubricated with ferrofluids
may offer very attractive advantages. Therefore, a complete theory
of lubrication with fluids carrying magnetic particles has been
formulated.

In a former paper [1]%, the general momentum equation for
ferrofluids was developed by introducing the magnetic stresses.
Under the assumption that the pressure is constant across the film,
some compatiblity conditions for the magnetic effects were dis-
cussed and the velocity profiles were obtained. Furthermore, a
substitute for the usual Reynolds pressure differential equation
was developed. Since the former analysis was particularly applied
with the short bearing approximation, we will now extend the
available theory first to infinitely long bearings, then to gen-
eral tridimensional lubrication case.

The integration of the pressure equation yields the solution
of the problem. Let us first consider the pressure distribution

0 . . . . . .
P( ) in a nonmagnetic lubricant with the same viscosity as that
of the ferrofluid, but without the effect of magnetic stresses.
It was earlier shown that this viscosity, UlH’ is that of the

base fluid, increased by the effects of ferrite particles in sus-
pension and by their orientation due to the magnetic field. The

0 . . .
total pressure P = P( ) + P, where P¥% represents the contri-
bution of magnetic stresses, is then given by the equation [1]

b i aVl OH
E—;VQQ—VM) ax (v vl +V'~ —Vl )jOAdXQ + H—5—>Zl— - (v 1 )W
H 3(HVE.) ( H
d 1i 3 | oP . s
ax fov de + e ax.[ax. J de2 =0; i=1,3, (1)
i i i~-“0
where

*Numbers in brackets designate refe

rences at end of paper.
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v [ TR L s oo -

X X dX H X dX H dX X dX
o [ AL e
0 0 0

(2)

Because this equation preserves the linear character with
respect to P, one can consider separately the known solution

P(O), for nonmagnetic fluids, and P* which fulfills the part of
Eq. (1) where the pressure and the magnetic effects are involved.
Therefore, with

(3)

where v? represents the velocity components induced by the mag-

netic field, the differential equation in P%, derived from (1),
is

5 H H sp (H
55 (Vﬁi—vii)JoAdx2 - JOV X, + HVﬂ + ax JOde2 = 0; 1i=1,3.(4)

Lo

The subscript i = 1,3 means summation in Eqs. (1) and (4).

II. THE BIODIMENSIONAL PROBLEM

For unidirectional flow, i =1, BP*/BXl = dP*/Xm, Eq. (1)
yields

H
JADVE=(VE, -v& )ATAX, -HVE +C
_ 0"'1 21 11 2 1i lXm +C.. (5)

H 2
fOde2

Let us now assume both magnetization M%* and field H as inde-
pendent of Xy This is a reasonable hypothesis due to the small-

ness of the gap between the journal and the bearing: however, a
certain approximation is introduced, due to the temperature pro-
file across the film, while the magnetization generally varies
with the temperature. As shown earlier [1], the field gradient
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across the film may be considered as negligible when compared to
the derivatives BH/BXi (i = 1,3) and, for certain magnetic

fluids, the pyromagnetic coefficient vanishes. Therefore, the
components of the magnetic induced velocity are

21 2 502
VE = B.()_I‘./I_.l’.l_% _.a{._.{_ X2 YR, = 0: V%, = E_O_M._._l'_l_z_ _.B_H_ H2 s 1= 1,3, (8)
TR N PRt T L T S 29

In a limited range of field magnitudes, the magnetization may be
expressed as [2]

wr = o(THP L - o H T, (7)
with o(T) = 0, = constant under the previous assumptions. At the
saturation point M* = ¢. = const and =n = 1.

0

In further developments Eq. (7) may be used, or the more gen-
eral expression,

ME = Oof(H) (8)

and with 1 = 1,3 standing for summation

fM*égidXi = JM*(H)dH = ME(H) + Cype (9)
where CM = const.
For constant viscosity, M = 1, and formula (5) becomes
uooohg i oH™
| Eﬁlvgﬁjo(x2—H)X2Eﬁqfdx2+cl
PR = _!;HS Xm + C2. (10)
2
The boundary conditions for the solution Pi are
Xy = X H= Hi; PE = 0, o
X, = X 55 H = Hys P% = 0.
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Introducing now the value of M% (7) in Eq. (10), we obtain the
values of C., and C_, and finally

1 2
, jxl Xm
MO h 3
. 0°072 |,n n ll H
p% = H™ - H - (H ) (12)
© BUlVbn 1 %10 Xm
*11 g
If H2 = Hl’ formula (12) simply becomes
OO h
P% = o, Vbn(H H ), (13)

which, as already found, shows that P% > 0 if H > Hl, i.e., a

supplementary magnetic pressure is superposed to the pressure
built-up by viscous effects, if the field inside the active zone
is higher than that at the boundaries.

A similar solution may be obtained, under the same assump-
tions, for the tridimensional problem. Equations (1) and (6)
yield

5 |3 hz SH  op%

X, Bl VD 9X.  OX. =0; 1=1,3, (14)
1 1 i i

where 1 also shows summation. Let us introduce a new function U

uohg
WM" - P® = U. . (15)

1
This substituion is always possible if the value of M%* as given
by formulae (7) or (8) is valid, and the viscosity is constant.
Hence, from Eq. (14), we deduce

m~—(H =) =03 i=1,8 (16)

Using a procedure developed in [3] and [4], U is assumed to be
of the form

_ T nm
U= UO(Xl) + 2 [Ucn(Xl)cos———

nm
P 17)
L 0y X3 + Usn(Xl)81n 3 X ] (

3
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Introducing the expression (17) of U in Eg. (16) and equa-

si

ting to 0 +the coefficients of coz nﬂXS/K, the following equa-

tions are obtained, if H depends only on Xl

- HY = o. (18)

The first relationship corresponds to the equation already ana-
lyzed of one dimensional flow, while the second expression is

valid for every function Y = U and Y =U_ .
n cn n sn

III. SLIDER BEARINGS OF FINITE LENGTH

We consider a linear variation of film thickness, i.e.,

i, -
H=H - c——(X.-X..); X.. <X <1+X _, (19)
1 X12 Xll 1 711 11 — 1 — 11
where - Xll =1, H2 = 1. Let us introduce a new variable
X =X
T 12 711 m H )
g =2 12 My, 1T H | (20)
1 A Hl H2 A Hl 1
‘he last  uation of (18) may be written as
szn 3 dYn 2
2+E_EE—_HYD=O (21)
dEl 1 1

This is a Bessel equation whose solution is, with An’ Bn arbi-

‘rary cons' .ts and Il(ngl), Kl(nil) the modified Bessel func-

ions of . Jirst order,
Y = 2[AI (nE.) + B K (n€)] (22)
n El n 1 1 nl 1
Introduc the solutions (22) in Eq. (17), and also using the

value of UO( L) as given by the first Eq. (A.3), we obtain from
Eq. (15)
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2 —_
P = Hol e oo L €1 c
" Bu.,Vb 2(H.-1) -2 72
1 1 [Hl—(Hl-l)(Xl—xll)}

v o1 nm
+ zlzaj{[AcnIl(nEl) + BcnKl(ngl)]cos—j\—X3

. nm
+ [AsnIl(ngl) + BsnKl(nEl)]81n—X~X3} (23)

with

m i 1= =
£(X) = o= (=—+X, -X.); U (£) = ——g—teez =T +C,. (24)
11 IR Bl 0"1 2x2(Hl-1)3 gi 1772

The constants C., C., A ,B LA ,B are determined such
1 2 cn cn sn sn

that P* matches the required values at the boundaries. Gener-
ally speaking, so far as an infinite number of constants are

avallable, any kind of pressure variation upon a given curve can
be represented, if P* 1is continuous and finite. However, the

physical conditions are already fulfilled by P(O), the solution
for nonmagnetic films, such that P% = 0 at the boundaries, i.e.,
H H
— — I_T_ 1 . - = IT_ _._.___l . E -
817817 % -1 8178107 7 Hl—l'*l)’ pr =0
X, = iﬁﬂ P% = 0 (25)
3 2° :

Furthermore M#* i¢ a known function given by (A.1) with the usual
procedure to obtain the Fourier coefficients (see Appendix A, for-
mulas (A.6)). Now, keeping in mind that the pressure distribution
is symmetric with respect to the plane OXlX2= also considering

the last condition (25), then Eq. (23) must contain only odd cosine
terms such that n shall be replaced by 2n - 1 and all coeffi-
cients A = BSn = 0. Hence, the first boundary condition (25)

yields the values of AC on-1 and BC op-1 oS follows (Appendix B)
2
w.h K {(2n-1)&_ .}
e A (5 )-E L2 A (g.)]
6ulVb 12 ¢c2n-1""12 llKl{(Qn—l)Ell} c2n-1""11
A = 5
c2n-1 K {(2n-1DE )}

K {(2n-1)E 7 1 {(2n-1)g, 3-1, {(20-1) )}
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2
u0h2 Il{(2n—l)glz}

6, Vb [512Ac2n—1(512)—51111{(2n_1)£ll} A o180
Beon-1 7 I (D}
Il{(zn-l)gll}Kl{(Qn-l)Ell}—Kl{(2n-1)g12}

(26)

The constants Ei, C, are obtained as shown in Appendix A, there-

2
fore both AC and Bc are fully determined.

2n-1 2n-1

IV. JOURNAL BEARINGS OF FINITE LENGTH

The variation of H as a function of the position angle
with respect to the centerline is

3

“H = (l+ecos 8)/(1-€); Hy = (1+e)/(1-e); H 1; ¢ = e/c. (27)

2
With the journal radius as a reference length, we have 0 = Xl'
The value of U, as given by (A.3) and formula (27) is

2 X
_ = 2+€ ~E -1 /l-€ 1
UO(Xl) = Cl — /—————l+€ tan [/l+€ “can—-—2 ]

(1+€)
e ! 1-e .3 )| ,c. (29
2(1+e) 1+e cos Xl 1+€ cos Xl 1+e 2°

The constants C., C. are obtained from (A.5), where I(Xl) is

1?7 72
the term in brackets in (28).

V. BOUNDARY CONDITIONS

Unlike slider bearings with surrounding ambient pressure, the

boundaries Xll and Xl2 are to be calculated as being the loci

where the combined effect of magnetic and hydrodynamic pressure,

inside the film, reaches the value PO. Because magnetic and

hydrodynamic stresses are uncoupled, the hydrodynamic pressure is
built-up independently of the applied magnetic field. Therefore,
the contribution of viscous forces remains unchanged when H is
constant or zero. We can then assume the integration constants of
the hydrodynamic solution as known and the hydrodynamic pressure
distribution as well. Thus, only the constants of the solution
for the magnetic pressure have to be determined.
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For hydrodynamic solutions, the Sommerfeld boundary condi-

p(0) (0)

tions, (X ) =P (2ﬂ+Xl) allowing for negative hydrodynamic

pressure are most llkely to occur. The Swift-Stieber conditioms,
P(O) (O)/BX = at the exit, do not seem appropriate for,
when combined w1th positive magnetic pressure, they actually
eliminate the exit point, allowing overall positive pressure.

Also the Swift-Stieber conditions, applied to the resultant pres-
sure, have the effect of coupling hydrodynamic and magneticeffects
by boundary conditions, a situation which physically seems incor-
rect. Moreover, the position of the inlet should not be dependent
upon the magnetic stresses, which in journal bearings may exist
upon all the bearing circumference.

Keeping in mind that the magnetic pressure P* is generated
by the variation of the magnetic field (14) and that M#% = const.

if BH/BXi =0, (i=1,3) then P%* is constant too, as shown in

Appendix A. Henceforth, if M* = M* = const. for X, < X%

1 1—-"11°
* = p% i = MR = > X%
then P Pl and if M M2 const., for Xl XlQ’ we have
P* = Pg as shown in Fig. 1. The initial magnetic pressure may be

assumed Pi = 0, because no magnetic effects occur ahead of Xil,

(X3) \§§§§§

\\\\ o X

M0 Xy) \\\\ 2%
\\\2§

1

Fig. 1. Developed bearing surf&ce, showing the regions with
M* variable and M = Mﬂ = constant, j = 1,2. The curves le(XS)

are the boundaries of those regions.
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while Pg might have a certain value when Mi # Mg. In journal

bearings, if M* is a continuous periodic function, we have

XiQ = Xil-+2ﬂ, Mi = M§ (Mi means then the minimum value of M#*
with respect to Xl) and Pf = P%(X3). Obvicusly, when Pg does
not depend on X3, then, along a line Xil = Xiz(xs), PE = P§

= P*(Xl’iA/Q) = 0.

From the previous considerations, the boundary conditions for
journal bearings may be written as follows

A . A
107) = PR -5 = 0

(29)
P"[Xil(xa)] = 0 P“[XEQ(X3)] = Pg, or P“[Xfl(x3)+2“]: P“[XTL(X3)13

(0)

(0) . - . _
P (xll,xa) + P (Xll,X3) = P (le,x3) + P“(Xl2,X3) = PO.

VII. THE PRESSURE DISTRIBUTION IN FINITE JOURNAL BEARINGS

The Solution Yn of the second Eq. (18) is similar to that

obtained by Tao [5]. Introducing the value of H from Eq. (27),
we have

d2Yn 3e sin Xl dYn n2ﬂ2
- Y = 0. (30)
dxi 1+€ cos Xl Xm X2 n
We set
_ . -1 . _ l+e
X, = 2 sin Vg 3 a = S (31)
to obtain from (30) the Heun equation
2
d Yn a 7 2 dYn n2ﬂ2
g(g-1)(&-a) > tls-(5ra)g+ug 145+ 5—(E-a)Y_ = oO. (32)
dz - & n

Using the notations [6]

o= 3/ 175 g = 212,

3A
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2 2 2 2
nmw n T

_ ) - 3
1 A2 a; q, = AQ at 5, (33)

the solution of Eq. (32) may be written as

= L. = 3.
Yl“zﬁ Y2_23q

1 1-y 1
Y= AF, (8,q.50,8,7,,5,8) + B g 2F2n(a,q2,a,8,y2,§-,g), (34)

The functions Fin are expressed in terms of power series, which

for a >1 and & <1 (3l) are always convergent. Therefore [6]

. (1),m
Fop =1 ) c B i=1,2, (35)
m=1
with
Cil) _ a-l .
Vi
q.
1 1 i
[dﬁfihw&3+%157—w
¢ = 2a(y.t1)
i
(1) _ 1 1 )
a(m+l)(yi+m)cm+l = [a(yi+m-§-)+ a+~B—~§-+m-f7;]mcm
- [(m-1)(m-2) + (m-1) (arBr1) + a8le ). (36)
It may be observed from (33) that
n27T2
a+B=3; aB= ——, (37)
A
and the coefficients c;l) are real, although o and B may be

conjugate complex numbers. The recurrence formulas (36) yield

directly the c;l) - s, such that a simple computer program can

be used to generate the Heun functions Fin (35) with any desired

accuracy.
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The solution is similar to (23) and, by using the relation-
ships (A.1) and (28), it may be written as

2
ph= 2924 (v ) g oK)+ z [A (x.)
611 BU_Vb 0 1 2n- l 1,2n-1 l
X u.ohg X3
+ B sin—=F (X)) + A (X.)Jcos(2n-1)mr—=— . (38)

2n-1""""2 %2, 2n-1""1 6, Vb “c2n-1""1

The conditions (29) yield the constants A2n-l’ B2n—l’ by a pro-
cedure already shown in Appendix B for slider bearings:
2
A ol
on-1" 6u 6. Vb
1
X% X%
. 12 .11
sin—5=F) on 1A on () -sin5=F,) o CFDA ()
X% X% 2
. ll " 12
STy on1 KT o1 (KR -sin 57T, o 1 (T on 1 (X))
(39)
2
5 - Holty
2n-1" 6, Vb
1
Fl,zn-l(xil)Ac2n 1 (X§,)-F 1,2n- 1A o0 1 (X))
X% X% *
. 1 l . 1 2 .
1057 F) on-1 9001 o1 (K073 1n 57 F) on 1 (K49 o (XE)
In the above formulas Xil, Xi?’ are the values of Xl
limiting the domain of variation of M¥%, since constant M* val-
ues do not generate magnetic pressure P#, as shown by Eq. (14%)
and Appendix A. The particular case P¥% = 0 for both Xll’ X§2

at the ends of the interval of variation of M* was considered in

(A.5) to obtain C,» C,. More generally, if M?, Mg (the initial

and final values of M%) are not equal, then the constants Ei, Eé
in (28) should include this effect, by adding the terms
b4 X
& 12 3 = % 12 3 =
pE/(f, dx,/H”) to C, and PI(X,;)/([ ~“dX,/H) to C, (here

1, 11
= (uOhQ/GUlVb)(Mg-Mi)).
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The curves in Fig. 2 show, for a given value of X the

3’
p(0)

, of the magnetic
limited by the con-

variation of the hydrodynamic pressure
pressure P¥*, with the abscissas Xil, X§2

stant values of M# (Mi and Mg) and the resultant curve

P P(O) + P¥. It may be observed that the boundary conditions

P PO, (29), occur at Xll and XlQ’ which are not know?a)a

priori. These abscissas must be found after addition of P

P%*, and they show, as in a previous paper [1], the increase of
the active area of the bearing, due to the variation of the mag-
netic field, while the pressure is higher than that produced only
by viscous stresses. Hence, the actual boundary conditions are a
result of hydrodynamic and magnetic effects, and they cannot be
anticipated, nor used in solving the problem, as in other more
usual situations met in lubrication theory.

and

(0)

Fig. 2. Curves P (x.), P*(Xi) and P(Xi) showing hydro-

dynamic, magnetic and resultant pressure variation at X, = const.
The abscissas Xij (i = 1,2,3) separate zones of variable and con-

stant M#; X0 Xl2 are the boundary values of Xl for the total

pressure.
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A more general case is when Pi and Pg are not located at

Xil = fl(X3) and sz

= f2(X3). A procedure similar to that already discussed may be

constant abscissas, but along curves

used, by introducing the above relationships in (38) while P#% = 0

or P= = P§. By taking N discrete values Xil and Xi?’ Eq.

(38) yields a system of 2N equations with 2N variables A

<n <
B2n~l (1 <n<N), tobe solved.

2n-12

VIII. CONCLUSIONS

1. Magnetic and viscous effects can be studied independently, due
to the linearity of the governing equations.

2. For the unidimensional flow (infinitely long bearings), the
two-dimensional magnetic pressure field depends on both film
thickness and magnetic field. However, when the initial and
final magnitudes of the magnetic field are equal, then the
magnetic pressure is independent with respect to film thick-
ness variation. In all cases, simple formulae are obtained
for the pressure distribution.

3. The tridimensional problem is solved, both for slider and
journal bearings. Analytic formulae and expansions allow easy
computer programs for numerical applications. The solutions
are expressed in Bessel or Heun functions.

4. The boundary conditions for the resultant pressure (combined
magnetic and hydrodynamic effects) are not known, a priori,
and depend on the intensity and distribution of the magnetic
field and magnetization.

5. The Sommerfeld boundary conditions for the hydrodynamic pres-
sure shall be used, in connection with the specific conditions
for the magnetic field, to obtain the real extent of the bear-
ing active area.

6. Magnetic pressure is generated only over the surfaces where a
variation of the magnetic field occurs. The geometry of those
surfaces is a controlling factor for the solution of the tri-
dimensional lubrication problem and for the mathematical for-
mulation of its boundary conditions.
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APPENDIX A

Considering AO(Xl) = M*(Xl,iA/Q), i.e., the part of M#

(see Formula (9)) independent of the coordinate X then we can

39
set

w X
_ 3
Mﬂ(Xl,X3) = AO(Xl) + nzl[ACQD—l(Xl)COS(2n—l)ﬂ_X

X

+ AsQn(Xl)Sin 2nﬁ—§?], (A.1)

which shows that for an infinitely long bearing, X = «, M* = M%,

M) = A+ L Aoy
n=1

(X.). (A.2)

Assuming now Mi(Xl,XQ) is symmetric with respect to the plane

0. Equation (15)

Hl

X, = 0 (middle of the bearing) we have A

3 s2n
and the first Eq. (18) yield
_ Xm _ uoh2 .
UO(Xl) = clj ;;; +C, = Eﬁfﬁ?Ao(Xl) - Ph(Xl). (A.3)
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Since the last member of (A.3) does not depend on X and H

3’

as well, then both C., C2' are constants. For X3 = *A/2, Eq.

(A.1) shows that AO(Xl) and F*(Xl) actually represent the

effect of the magnetic field along the borders of the bearing par-
allel to OXl axis, P*(Xl) = P*(Xl,iA/Q).

If the pressure at X3 = *A/2 1is constant, P = PO,
assuming it is given by the usual solution for nonmagnetic fluids,
then P%* = 0 and

and

BU,VD - 61, Vb ax,
—]I—h—Q—‘UO(Xl) = AO(Xl) = . h'2 (ClJ H3 +C2) (A.4)
02 Ho'o

The relationship (A.U4) yields the condition that the distribution
of M* (hence M* and #H) must fulfill, in order that the par-
ticular boundary condition P#(%)A/2) = 0 for pressure to be sat-
isfied. In the general case, when AO(Xl) is not of the form

shown in (A.4), then accordingly to (A.3), a certain pressure dis-

tribution over the boundaries X3 = +)\/2 results, as a conse-

quence of magnetic effects. Since AO(Xl) is known, the con-
stants Ei and Eé are determined to match the pressure values

at the inlet, Xl = Xll’

P“(Xll) = P“(Xlz) = 0, we obtain

and outlet, Xl = X12 = Xll + 1. When

2
Hohs AO(XlQ)—AO(Xll)

1 GulVb I(XlQ)—I(Xll)

2

Hohy Ag(XyIT(X,)-A (X, I(X, ;)
C, = .
2 6u, Vb - ®
My 1(X, ,)-1(X )
Xm
I(x,) = J —. (A.5)
1 3
H
In practice, AO is often either zero or a constant, therefore
- - 2
¢, =0 and C, = uoh2A0/6ulVb.
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The functions Ac2n—l’ AsQn (n integer) are obtained by the

usual procedure, with M*(Xl,Xa) a known function:

1 2A X3
Ac2n—l(xl) = jjjo Mﬂ(Xl,XS)cos(2n—l)W—X—dX3;
1 2\ X3
As2n(Xl) = 7:Jo M"(Xl,X3)81n 2nﬂ*x—dX3. (A.B)
APPENDIX B

We use the relationships (A.4), (A.5), and introduce the
development (A.l) in Eq. (23). Afterwards, we let the coeffi-

cients of cos(Qn—l)ﬂXS/k vanish, when Xl = Xll and Xl = Xl2

= Xll +1, for n=1,2,...,%, in order to satisfy the first

condition (25). At each n value two independent equations are
obtained,

2
HoPy 1
61 vb Neon-10815) T Ay 1T {208 )
1 1i
+ Bc2n_lKl{(2n-l)£li}] =0; 1=1,2. (B.1)
Solving the system (B.1), gives the values of Ach—l and Bch—l’

as shown by formulas (26).




